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Abstract

Diabetic Foot Ulcers (DFUs) are among the most severe complications of diabetes and can lead to infections, amputations, and increased
mortality if not detected early. This study presents an Al-based multiclass DFU detection system using a convolutional neural network built
upon the EfficientNetB5 architecture to classify foot images into four clinically relevant categories: no ulcer, immediately treatable, treatable
within four weeks, and complex wounds. A curated dataset of 6,247 foot images was constructed from public and clinical sources through
expert-guided manual filtering and annotation. Comprehensive preprocessing, including noise removal, normalization, resizing, and
targeted data augmentation, was applied to address image quality issues and class imbalance. The proposed model achieved an overall
accuracy of 80.35%, with a macro-averaged precision of 81.2%, recall of 78.6%, and F1-score of 79.7%, demonstrating balanced
performance across all classes. The system is further integrated into a mobile health application to support early DFU screening, offering
a scalable and low-cost solution for resource-constrained healthcare settings.

Index Terms: Convolutional Neural Networks, Deep Learning, Diabetic Foot Ulcers, Medical Imaging, and Mobile Health Application.

I. INTRODUCTION

A. Background Information

Diabetes or the health problems caused by it, for example,
diabetic nerve damage, is a big concern all over the world.
The number of people with diabetes in Pakistan alone
exceeds 33 million. Many of them are not getting the
required medical help. The situation is worse in the
countryside where health facilities are scarce, and the ones
that exist do not always spot the initial signs of diabetic
foot wounds. Diabetic foot wounds are very perilous
because, if not detected in time, they can become serious
enough to require surgery or even amputation.

To fight this problem at an early stage, a mobile application
that is easy to use is under development. The app is based
on artificial intelligence and imaging technology and
works by taking plus analyzing photos to timely detect foot
wounds. The idea here is to equip community health
workers, patients to manage the wounds and hence reduce
the pressure on the hospitals and clinics that are already
burdened with work by the doctors and staff.

B. Motivation and Significance

Diabetes and its complications like neuropathy are serious
issues that affect a lot of people all over the world and is
therefore considered a major public health problem
globally. In Pakistan, diabetes affects more than 33 million
people, and a large part of them, especially in rural areas
and places with limited resources, go undiagnosed or
untreated. A lack of specialized medical services and the

slow clinical-response often lead to detection of Diabetic
Foot Ulcers (DFUs) at advanced stages. DFUs at a late
stage can be a cause of severe infections, usually resulting
in long hospital stays, and in very rare cases, amputation,
all of which are a serious burden not only on patients but
also on the health care systems. The point is that early
detection and prompt treatment are then necessary to
minimize complications and to make patient health
outcomes better. This research was triggered by these
issues, and it intends to introduce a convenient and easy to
use mobile-based diagnostic tool that utilizes image-based
analysis and deep learning methods to detect DFU very
early. The proposed system, through a mobile Health
(mHealth) platform enabling fast screening, is a great
potential to not only support health professionals, provide
patients with power, and also improve the accessibility of
early diagnostic aids in the areas with limited resources.

C. Problem Statement

Diabetic Foot Ulcers (DFUs) are one of the main causes of
infections and amputations that are preventable, especially
in places with low resources such as rural areas, where
trained medical staff and diagnostic facilities are hard to
find or completely absent. The current clinical practice is
mainly dependent on manual visual inspection, which is
subjective, takes a long time, and is often delayed because
of patient inaccessibility or lack of awareness. Automated
image-based methods for DFU detection have been
studied; however, most of the existing systems concentrate
only on binary ulcer classification, and thus, they do not

@ @ Creative Common CC BY: This article is distributed under the terms of the Creative Commons Attributes 4.0 License.
(e | It permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

32



Ureel Lal Muhammad et al,

offer clinically meaningful severity-based categorization.
Moreover, the problems of class imbalance, variability in
real-world image quality, and limited deployment within
practical  healthcare  applications diminish  their
effectiveness in real-world settings. This paper, therefore,
identifies the lack of an accurate, clinically relevant, and
deployable multiclass DFU detection system capable of
classifying foot images by ulcer severity and treatability
while supporting early screening through mobile-based
solution as the core problem to be solved.

D. Research Contribution

Existing studies that have been conducted so far on
diabetic foot ulcer detection mainly deal with binary
classification or use datasets that are limited in size and do
not sufficiently represent the varying degrees of ulcer
severity that are relevant in the clinics. Numerous methods
give weight to classification accuracy and thus do not
consider matters like class imbalance, the difficulties of
real-world deployment, and the everyday integration of
such systems in the clinics. However, this research
introduces a clinically oriented multiclass DFU
classification system that classifies foot photographs into
four classes based on severity and treatability. The
proposed method employs expert-guided dataset curation,
targeted augmentation of minority classes, and balanced
performance evaluation to guarantee robustness across all
categories.

Moreover, the deep learning model that is trained is
incorporated into a mobile Health (mHealth) application
with  telemedicine support, which facilitates the
deployment of early screening and decision support in
under-resourced areas. What makes this paper exceptional
is the combination of severity-aware multiclass
classification, robust preprocessing for real-world data
variability, and practical mobile deployment, which in
turn, improves the clinical applicability of automated DFU
detection systems.

E. Paper Organization

This paper comprises seven (7) sections. Section | presents
the introduction to this research study, including the
background, problem statement, and key research
contributions. Section 11 reviews related work on diabetic
foot ulcer detection, highlighting existing methodologies
and their limitations. Section 111 details the proposed
methodology, including dataset preparation, preprocessing
techniques, and model development. Section IV presents
the results and provides a comprehensive discussion of the
findings. Section V outlines the mobile application
workflow and system integration, demonstrating the
practical implementation of the proposed model. Section
V1 concludes the paper by summarizing the key outcomes
and discussing their significance. Finally, Section VII
outlines future work, focusing on expanding the dataset,
integrating advanced deep learning models, and
incorporating real-time monitoring and wearable sensors
to enhance system accuracy, usability, and patient care.

Il. LITERATURE REVIEW

A. Summary of Existing Research

Automated detection of Diabetic Foot Ulcers (DFUSs) has
attracted considerable research attention due to the clinical
importance of early diagnosis and prevention of severe
complications. Initial approaches relied on traditional
image processing techniques combined with machine
learning classifiers. However, recent advancements have
shifted the focus toward deep learning—based solutions,
particularly Convolutional Neural Networks (CNNs), due
to their ability to automatically extract discriminative
features from medical images [1], and [2].

Several studies have demonstrated the effectiveness of
CNN architectures such as VGG-19, ResNet, DenseNet,
and EfficientNet for DFU detection and classification [3].
Publicly available datasets, especially the Diabetic Foot
Ulcer Challenge (DFUC) datasets and Kaggle repositories,
are widely used to train and evaluate these models [4].
Transfer learning has been extensively applied to
overcome the scarcity of labeled medical data, enabling
models pretrained on large datasets to generalize
effectively to DFU detection tasks. Model performance is
typically assessed using metrics such as accuracy,
precision, recall, F1-score, ROC- AUC, and sensitivity [5-
7], [17], and [18]. See Table I for better understanding.

Table I: Summary of Reviewed Literature on DFU Detection

No. Parameter Count
Total Number of Papers
1. - 25
Reviewed
2 Total Preprocessing 19
" | Techniques Discussed
Total Machine Learning 12

Models Evaluated
4. Most Common Dataset Used

DFUC (2020 & 2021)
6 (Accuracy, Precision,
Recall, F1-Score, ROC-

AUC, Sensitivity)

Performance Metrics
Analyzed

B. Datasets and Preprocessing Approaches

The development of DFU detection models heavily relies
on datasets. Researchers accessed more than 2000 images
coming from the DFUC 2020 dataset that contains both
ulcerative and non-ulcerative cases [1]. Two researchers
worked on a denoised subset of the DFUC dataset through
CNN-based denoising techniques to improve the quality of
the images [2]. Likewise, analysts employed a Kaggle
dataset of 2674 images for the classification based on
EfficientNet [3]. The preprocessing techniques are a
common method for enhancing the quality of the data as
well as the robustness of the model. They include resizing
of images, noise removal, contrast enhancement, and data
augmentation [8], Authors tried noise reduction, image
scaling, and augmentation to make generalization stronger
[4] while in another study which utilized resized images to
224x224 pixels to ensure that they matched the input
requirements of EfficientNet and ResNet architectures [3].
Some authors pointed out the role of contrast enhancement
in the DFU detection performance improvement [8] while
some other researchers were concerned with artifact
removal that would lead to noise reduction during training
[9]. Figure 1 shows ml model usage in research papers.
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Figure 1: ML Model usage in Research Papers

C. Deep Learning Models and Performance Metrics

Deep learning models are capable to detect complex
patterns in medical images; thus they are the best solution
for Diabetic Foot Ulcer (DFU) detection. Among them,
Convolutional Neural Networks (CNNs) stand out,
especially the ones like DenseNet, VGG-19, ResNet, and
EfficientNet. According to researchers, various object
detection networks were examined to attain optimal
detection of DFU [1]. Authors achieved an impressive
94.2% accuracy by using EfficientNet [3]. Likewise, in
another study which showed the potentiality of
DenseNet201 by attaining high F1 scores and accuracies
across different data [4].

Researchers enhanced their dataset by applying noise
removal, image scaling, and augmentation to improve
variability and generalization. Some authors standardized
the images to a resolution of 224x224 pixels to ensure
compatibility with models such as EfficientNet and ResNet
[3]. Other researchers, employed advanced contrast
enhancement techniques to improve model performance
[8], while in another study which focused on removing
artifacts to reduce noise during training [9].

One of the key factors in these models is feature extraction,
and transfer learning techniques are generally applied. To
give a clearer idea, a study took the weights of EfficientNet
and ResNet which were pre-trained for DFU detection [3].
The efficiency of the deep learning model is mostly
measured in terms of accuracy, precision, recall, F1 score,
and ROC-AUC. Some analysts recorded an accuracy of
82.4% and sensitivity of 69.2% for their CNN model,
which is indicative of a balance between true and false
positives [2]. However, there are still some challenges that
remain such as excessive fitting, limited transferability of
datasets, and insufficient testing in real conditions that are
mentioned by researchers [1], and [8].

D. Identified Research Gap and Link to the Proposed
Work

Despite notable progress, the existing literature reveals
several limitations. First, the majority of DFU detection

studies focus on binary classification, which limits clinical
usefulness by failing to distinguish ulcer severity or
treatment urgency [2]. Second, class imbalance,
particularly the under-representation of severe ulcer cases,
is often insufficiently addressed, resulting in biased model
performance [4]. Third, many studies prioritize
experimental accuracy without considering real-world
deployment, mobile integration, or accessibility in
resource-constrained environments [10-12]. Furthermore,
while advanced techniques such as ensemble learning,
attention mechanisms, and segmentation have improved
detection accuracy, few studies integrate these models into
deployable healthcare systems that support early screening
and clinical decision-making. These gaps directly relate to
the research problem addressed in this study.

To overcome these limitations, the present work proposes
a clinically relevant, severity-aware multiclass DFU
detection framework that classifies foot images into four
treatment-oriented categories. The proposed approach
combines expert-guided dataset curation, targeted
augmentation of minority classes, robust preprocessing,
and balanced performance evaluation, and is integrated
into a mobile Health (mHealth) application to support early
screening and telemedicine-assisted decision support in
resource-constrained settings [13-21].

Identify the Broad Area

i
‘.

[ Methods of Identification

[ Feasibility of Research Gap

[ Selection of Research Gap l

[ Expected Outcomes

Figure 2: Flowchart Illustrating the Systematic Process used to Identify
the Research Gap and Define the Proposed Solution
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The systematic process used to identify the research gap
and define the proposed solution is illustrated in Figure 2.
Recent work in diabetic foot ulcer analysis highlights the
rapid evolution of Al-based diagnostic tools. A research
(2025) provide a systematic review of AI/ML
classification techniques, underscoring accuracy ranges
and current challenges in real-world datasets [22], while in
another study (2025) which highlight emerging trends in
ML/DL segmentation and detection frameworks [23].
Hybrid models combining CNN feature extraction with
ELM classifiers have shown competitive performance in
DFU classification, emphasizing the value of ensemble
strategies. Other studies explore ensemble detection
pipelines, leveraging multiple network outputs to improve
localization accuracy of ulcer regions. Additionally,
approaches integrating thermal imaging and deep learning

suggest multimodal detection strategies that may enhance
early diagnostics. Compared to these, the proposed
EfficientNetB5-based multiclass framework not only
achieves competitive accuracy but also provides fine-
grained clinical categorization for ulcer severity — a
feature less emphasized in existing works [24], and [25].

1. METHODOLOGY

This section describes the end-to-end research framework
adopted for the development of a severity- aware Diabetic
Foot Ulcer (DFU) detection system and its deployment
through a mobile health platform. The overall workflow of
the proposed methodology is illustrated in Figure 3, which
outlines the sequential stages from data annotation to
system deployment and user access.

Data Model Model

Label DFU Train CNNs
images fine-tuning

Annotation Development ) Optimization K Development ™ &Cloud

Compression &

Portal &
User Access

Application Deployment

Mobile app Cloud inference  Prowider/clinician
(mHealth] setlp interface

Figure 3: Overview of the Proposed End-To-End Research Framework for Severity-Aware Diabetic Foot Ulcer Detection and mHealth Deployment

A. Data Collection

The data retrieval period was very important during the
modeling process. The section highlights the different
classification activities, the problems faced during the
gathering and refinement of the data, and the ethical issues
that were considered to maintain the integrity of the data
and the confidentiality of the patients. The dataset was
handpicked in a manner that it will be beneficial for the
project aimed at developing very deep learning models that
will accurately identify DFU, with accessibility and
scalability as the main focus, especially for the
underprivileged people in Pakistan. The method of data
collection was custom-made for multi-class, which was the
same as the aim of the project to provide exact and useful
diagnostic recommendations.

B. Data Sources

To verify Diabetic Foot Ulcer (DFU) detection, the project,
with its CNNs, considered the task of multiclass
classification as the hardest. Aircraft's task of classifying,
the by severity and treatability, was Pierson solely based
on the Octdaily dataset. The dataset given by Oct-Daily
contained 18,000 raw images of different kinds of wounds

from various positions, showing a total of four: Complex
wounds, immediately treatable, No ulcer, and Treatable
within 4 weeks. The images of the dataset were wide-
ranging, with non-foot wounds being included amongst
them. Hence, a manual cleaning process was done with the
help of medical experts to obtain foot-specific images that
are relevant to DFU detection. The dataset went down to a
total of 4,916 images after the cleaning process, as shown
in Figure 4 (Class Distribution of the Oct-Daily Dataset),
which are separated as follows: Complex wounds (225
images), Immediately treatable (1,827 images), No ulcer
(924 images), and Treatable within 4 weeks (1,940
images). The medical professionals monitored the pictures
during the annotating process to maintain clinical
accuracy, and this was in favor of the project which aimed
at classifying ulcers by severity and treatability for more
accurate diagnostic outcomes. The multi-class dataset was
made in such a way that the model would be able to
differentiate between the different ulcer stages which, in
turn, would enhance the model's applicability for patients
and healthcare providers in Pakistan's neglected areas.
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Figure 4: Composition of Multi—Classification Dataset

The process of collecting and preparing the data to train a
good deep learning model posed many difficulties. The
dataset was chaotic and dirty, thus quite difficult to be
classified into multiple groups. Initially, there were 18,000
images, but many depicted wounds on parts of the body
besides feet, like arms, legs, or chest and so could not be
used for foot ulcer detection. Manual filtering left only
6,247 images of feet. This operation was painstakingly
slow and required a tremendous amount of work since each
image was to be scrutinized meticulously and medical
experts were called in to confirm the final selection.
Besides, there was a significant possibility of errors due to
human factors, particularly when the wounds on the feet
were very similar to others. Another serious problem was
uneven distribution of data — the Complex wounds
category had only 225 images but the others had thousands
like Treatable within 4 weeks (1,940 images). This
predominance might lead to the model becoming partial,
so some methods, such as rotation and flipping of images,
were applied to augment the data.

C. Data Cleaning and Preparation

a) Data Annotation for Multi Classification:
To make sure the model works correctly and gives useful
medical results, Important data cleaning steps were done
before training began. We filtered the images by clinical
Insights, labeled by doctors to category carefully, and
combined the data to build a clean and reliable dataset that
fits the project needs.

b) Manual Filtering of Images:

The initial dataset came from Oct-Daily and included more
than 18,000 raw images of diabetic wounds located in
various body parts. As our primary interest was in diabetic
foot wounds, the data had to be filtered manually. With the
help of professionals and medical experts, particularly
podiatrists, we scrutinized each image and picked out only
the ones depicting foot wounds. This procedure was
critical for eliminating non-related pictures thereby
decreasing errors in the data which contributed to the
model's accuracy and results improvement.

c) Class Labeling:
The multiclass dataset comprises of four categories:

e Immediately Treatable (1,827 images),

e No Ulcer (924 images),

e Complex Ulcer (1,556 images), and

e Treatable Within 4 Weeks (1,940 images).

d) Final Dataset Composition:

As a result of manual filtering and labeling of the images,
a final dataset was obtained consisting of clear and useful
foot images that were in line with our research goals. The
number of selected and labeled images was 6,247. The
images were further divided into four classes for multi-
class classification. This dataset served as the principal
source for training, testing, and validation of the model.
Not only did it refine the data quality, but also the model
was able to exceed medical application performance.

e) Data Preprocessing:

The most crucial factors for machine learning models are
data consistency and quality, particularly when it comes to
medical imaging where minute details could alter the
diagnosis. To get the photos ready for training, testing, and
model evaluation, the authors used a few straightforward
data preparing techniques. A balanced dataset, image
consistency, and an improvement in overall image quality
were all made possible by the operations.

1. Noise Removal:
Noise in medical images can cover important details. This
makes it difficult for the model to detect and classify ulcers
in the right way.
The dataset frequently had background artifacts, anomalies
in the scanning process, and unrelated objects. To address
these issues, we used noise reduction.
We applied methods such as median and Gaussian
filtration. These filters preserved crucial characteristics,
such as skin texture and ulcer borders, while reducing
undesired pixel noise.
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2. Image Scaling:

We scaled every image to 456 x 456 pixels to maintain
consistency throughout the collection. EfficientNetB5
requires this input size. Because CNN models require fixed
input dimensions to function properly, standardizing image
size is crucial. The 456 x 456 dimension was selected
because it strikes a decent mix between quickness and
preserving crucial features. In medical pictures, such as
ulcer diagnosis, this is crucial. The primary ulcer features
were preserved with minimal distortion after resizing.
Additionally, it facilitated batch processing and improved
the model's performance during testing, validation, and
training (Figure 5).

Reszed nage 1 1058:058)

Resized uge 7 10560458

Figure 5: Image Resizing Process

3. Normalization:

Normalization is a crucial preprocessing step for
EfficientNetB5 image training. It ensures that the model,
which was pretrained on the ImageNet dataset, fits the
input data. Usually, this begins by adjusting the pixel
values to match the range that the model anticipates,
resizing each image to 456 x 456 pixels (the input size
required by EfficientNetB5), and converting the image
data to a float32 format. The pixel values, which originally
range from 0 to 255, are then passed through the
preprocess_input function from Keras' EfficientNet
module.

This function scales the pixel values to a range of:

(
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X

ey

Y- 1

In addition to ensuring that the input distribution is
comparable to what the network saw during its initial
pretraining on ImageNet, this normalization speeds up the
model's convergence throughout training. In the absence of
this step, mismatched input distributions would typically
cause the model's performance to deteriorate.

Figure 6 shows the pixel intensity distributions of the DFU
images after preprocessing and normalization, highlighting
how the values have been scaled to match the input
requirements of EfficientNetB5.
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Figure 6: Pixel Intensity Distributions of the Preprocessed DFU Images

4. Data Augmentation:
A major problem was class imbalance, especially because
complex cases like severe ulcers were underrepresented.
Targeted data augmentation techniques were applied
solely to the minority class in order to boost class diversity
and artificially increase its size.

These techniques included:

e Rotation: Simulated different viewing angles by

rotating the images.

e Flipping: Applied both horizontal and vertical
flips to enhance visual variability.

Scaling: Introduced spatial variation by resizing
images at different scales.

Brightness  Adjustment:  Modified
conditions to reflect real-world scenarios.
Random Resizing: Created size variations while
preserving key features of the ulcers.

lighting

Through these augmentation strategies, the number of
samples in the complex (severe) class increased from 255
to 1,556, resulting in a more balanced dataset. This
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improvement not only mitigated the class imbalance but
also enhanced the model’s robustness and generalization
performance when exposed to unseen data.

5. Gaussian Blur Application:

Gaussian blur was applied as a preprocessing step to
enhance image quality and eliminate noise. This technique
uses a Gaussian filter to average the values of neighboring
pixels. It aids in minimizing excessive detail and subpar
elements that are frequently present in medical
photographs. The blur eliminated noise that may have
distracted the model while preserving the crucial structure
of the ulcers. The model became more robust and
dependable as a result.

By using Gaussian blur, the system was able to focus on
the key features of ulcers and learn them better, see Figure
7.

Orignal Image Blued Edges, Sharp Wound

Figure 7: Gaussian Blur Applied to an Image

D. Model Development

a) Architecture:

In this study, the EfficientNetB5 model is employed. It is
a convolutional neural network that uses little processing
power and provides excellent accuracy. Compound scaling
is a unique technique used by EfficientNet. This technique
balancedly increases the input image size, width, and depth
(layers). These components are typically scaled by other
CNN models without a clear rule, which frequently results
in resource waste. One of the bigger models in the
EfficientNet family is EfficientNetB5. Larger input photos
and more layers are used. In order to grade the severity of
diabetic foot ulcers, this aids the model in learning minute
details from pictures. Mobile inverted bottleneck
convolution blocks, which help lower the number of
parameters and improve the model's efficiency, are used in
its construction. The EfficientNetB5 Architectures is
shown in Figure 8.

b) Justification of Model Choice:

Experiments have demonstrated that EfficientNet models
perform better than other CNNs like ResNet, DenseNet,
and Inception on a variety of benchmark datasets,
including medical pictures. When utilized for wound
inspection and ulcer categorization, EfficientNet offers
improved accuracy and generalization. This is due to the
model's ability to learn efficiently at multiple sizes
according to its compound scaling technique.
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Figure 8: EfficientNetB5 Architectures
Additionally, pretraining improves EfficientNetB5's c) Model Training:

performance. Further the large ImageNet dataset yields a
strong transfer learning environment, whereby the model
can take advantage of learned low- and mid-level features,
which are portable to medical images, with minimal
annotated data. This minimizes the requirement of large
training data and enhances convergence rate. Generally,
EfficientNetB5's efficiency- accuracy-scalability tradeoff
presents it as a fitting choice for this ulcer classification
task.

Hyperparameter tuning and data splitting are key tasks
involved in model training. The EfficientNetB5 model
training phase consists of these steps. How these
procedures aid in creating an effective classification
system is explained below.

1. Training-Validation-Test Split:
The three mutually exclusive subsets of the data set that
were split by 80%, 10%, and 10%, respectively, were
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training, validation, and testing. The split maintains a
sufficient number of samples for accurate model
performance estimates while enabling the maximum
amount of data to be used for learning.

e Training set (80%): Used to iteratively learn
from labeled photos in order to determine the
optimal model parameters. During training,
the validation set (10%) is used to monitor the
model's performance against out-of-sample data
and to guide the selection of hyperparameters to
avoid overfitting.

e Test set (10%): To maintain the original class
distribution, stratified sampling was used for the
split. Class distribution among all subsets were
done in such a way that each set captures the
complete diversity of the dataset, unseen data.
The split was done using stratified sampling so as
to preserve the initial class distribution among all
subsets in such a way that each set captures the
complete diversity of the dataset.

2. Hyperparameters and Configuration:
The model was trained and optimized with the following
hyperparameters:

e Architecture:  EfficientNetB5,  pre-trained
trained on ImageNet and then fine-tuned on the
diabetic foot ulcer dataset. Input size: the model
is automatically resized to465*465pixels.

e Input Dimensions: 456 x 456 pixels to
EfficientNetB5dimensions.

e Batch Size: Every training batch needs to contain
32 images.

e Epochs: 50 epochs are employed to provide
sufficient iterations to learn patterns without
overfitting.

e Optimizer: Adam optimizer with a initial
learning rate of 0.0001, due to its capacity to
adjust gradients.

e Loss Function: Multi-class cross-entropy for
categorical classification.

e Early Stopping: Employed patience of 5 epochs
to stop training if validation loss fails to improve
to avoid overfitting.

e Learning Rate Scheduler: Reduced the learning
rate by a factor of 0.1 when the plateau of
validation loss was reached for 3 consecutive
epochs to enable fine-tuning of weights.

e Data Shuffling: At each epoch, random batches
were made to avoid bias. The parameters below
were chosen based on past studies and tests to
improve the model’s performance for diabetic
foot ulcer classification.

3. Training Environment:
Training was performed on the Kaggle Cloud platform
leveraging its GPU computing power to speed up model
training.

e Equipment: NVIDIA Tesla P100 Graphics
Processing Unit with 16 GB virtual random-
access memory providing the computational
capability to train deep neural networks using
high-definition images.

e Software stack: Python 3.8 development
environment supported by TensorFlow 2.x and
Keras deep learning frameworks.

e Operating System: Linux from Kaggle. GPU
acceleration was enabled through pre- installed
CUDA and cuDNN libraries optimized for GPU
usage within the Kaggle environment.

Training duration was approximately 6 hours for 50
epochs, depending on batch size and dataset volume. This
setup facilitated quick prototyping and experimentation
with no local hardware needs, accelerating research
workflow.

d) Model Evaluation:

1. Performance Metrics

Precision, Recall, F1-score):
The performance metrics of accuracy, precision, recall,
and F1-score were used to measure the effectiveness of the
EfficientNetB5 model. The four medical classes can be
separated by the model, as these metrics reflect. The
classification report from scikit-learn revealed the test set's
results. It showed, among other things, the aggregate
(macro) and individual class results.

(Accuracy,

2. Confusion Matrix:

In order to demonstrate the ability of the classifier to make
correct and incorrect predictions across all four classes, a
confusion matrix was employed.

Figure 9 presents the confusion matrix depicting the class-
wise prediction performance of the proposed classifier
across four diabetic foot ulcer categories, highlighting
correct classifications and misclassification patterns
among the classes.

Confusion Matrix
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Figure 9: Confusion Matrix Illustrating the Class-Wise Prediction
Performance of the Proposed Classifier Across Four Diabetic Foot Ulcer
Categories
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3. Class-Wise Evaluation:
The performance of the model was analyzed separately for
each class to assess its effectiveness across different ulcer
severity categories.
This analysis highlights accuracy, precision, recall, and
F1-score for each ulcer severity category.

Figure 10 illustrates the class-wise evaluation of the
EfficientNetB5 model’s performance on the diabetic foot
ulcer dataset, presenting key metrics that reflect the
model’s effectiveness across individual ulcer categories.

a/ze 313 1s/xtep

Class wise Precision, Recall, and F1.Score

NN Fecision

Figure 10: Class-Wise Evaluation of the EfficientNetB5 Model Performance on the Diabetic Foot Ulcer Dataset

4. Example Test Predictions:
As a part of qualitative analysis, we gave indicative test
images as well. The displayed images were provided with
both the actual labels and the predicted labels. The actual
label is the correct category that was assigned by the
medical professionals while preparing the data. The

predicted label is the label where the model's central
performance and mistakes are easily visible.

Test predictions are utilized to evaluate the trained model’s
performance on unseen data, providing an objective
assessment of its generalization capability and
classification accuracy (Figure 11).

i1
/1 ———————————————— 10s 10s/step
B2 Predicted Class: Immediately Treatable

Predicted: Immediately_Treatable

B4 Predicted Class: no_ul

Predicted: no_ulcer

1/} mm—— 108 108/ stED
[ Predicted Class: Treatable Within_4_Weeks

Predicted: Treatable_Within_4_Weeks

Figure 11: Test Predictions for Model Evaluation

E. Fine Tuning of Model

This is the narrative of fine-tuning a pre-trained
EfficientNetB5 model, which initially had 74% accuracy,
on the Diabetic Foot Ulcer (DFU) dataset. The aim of the
project was to achieve better results from the model, which
would be able to categorize the images of the foot ulcers
into four classes: Immediately Treatable, No Ulcer,
Complex Wounds, and Treatable Within 4 Weeks. Fine-
tuning was performed through the model architecture.

a) Model Configuration:

The base model EfficientNetB5, which had been pre-
trained, was not entirely fixed but made partially trainable
by allowing the last 30 layers to be unfrozen while the
earlier layers were kept frozen so that the features could be
retained. The model was then trained again with Adam
optimizer, learning rate 1e-5, categorical cross-entropy as
the loss function, and accuracy as the measurement metric.
This included change, hyperparameter tuning, and data
augmentation application to increase generalization.
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b) Class Weighting:

The class weights for class imbalance were determined
using Scikit-learn's compute_class_weight function. The
final weights were: 0.68 for wounds that need immediate
treatment, 1.34 for no ulcers, 0.80 for complex wounds,
and 0.64 for treatable within four weeks. The classes that
were least represented were misclassified, and the training
was done using these weights, thus penalizing the under-
represented classes.

c) Training Setup:
The model underwent fine-tuning for 30 epochs with a
mini-batch size of 16. The use of mixed precision training
allowed for better usage of resources.

The following callbacks were utilized:

e  Model Check point:
/Kaggle/working/best_model_finetuned.h5,
saved the optimum model weights according to
validation accuracy.

o Early Stopping: Ceased the training if there had
been no increase in validation accuracy for 10
epochs, and the best weights were restored.

e Reduce LR On Plateau: Reduced the learning rate
by a factor of 0.5 whenever there was no
validation accuracy improvement for 5 epochs,
with a minimum learning rate of 1.

Figure 12 illustrates the training and validation accuracy
and loss curves over successive epochs, demonstrating the
convergence behavior and learning stability of the
proposed model.
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—— Train Accuracy
Val Accuracy

0.85 4
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Model Loss (Fine-Tuning)
— Train Loss
0.8 val Loss

0.7
0
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o -
0.4 \
T -r — T - - -
0 5 10 15 20 25 30
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Figure 12: Training and Validation Accuracy and Loss Over Epochs

IV. RESULTS AND DISCUSSION

This section presents the results obtained from training and
evaluating the proposed EfficientNetB5-based multiclass
Diabetic Foot Ulcer (DFU) detection model, followed by a
comprehensive discussion of their significance.

All results previously discussed within the methodology
section have been reorganized here for clarity and
professional structure. Quantitative results are supported
by tabular performance summaries, while qualitative
visualizations highlight model behavior and class-wise
distinctions. The discussion integrates comparisons with
relevant literature to contextualize the outcomes.

A. Quantitative Results

Table I summarizes the overall performance metrics of the
proposed EfficientNetB5 model. The evaluation was
conducted on a held-out test dataset comprising 10% of the
total samples (n = 625). Key performance indicators
include accuracy, precision, recall, and F1- score, which
collectively reflect the model’s discriminative capability
and robustness against class imbalance.

Table 11: Performance Metrics of the Proposed EfficientNetB5 Model

,\?6_ Metric Value (%)
1. Accuracy 80.35
2. Precision 81.20
3. Recall 78.60
4. F1-Score 79.70

The overall accuracy of 80.35% indicates a reliable model
performance suitable for clinical-level screening tasks.
More importantly, the macro-averaged precision and recall
demonstrate balanced predictive power across all four
ulcer categories—No Ulcer, Immediately Treatable,
Treatable within 4 Weeks, and Complex Wounds—
ensuring the system does not overfit to any dominant class.
The F1-score of 79.7% reflects a strong balance between
precision (minimizing false positives) and recall
(minimizing false negatives), which is critical for
healthcare-related applications where both false alarms
and missed detections carry significant consequences.

B. Comparative Model Analysis

To validate the superiority of the proposed model, it was
benchmarked against widely used CNN architectures such
as VGG19, ResNet50, and DenseNet201. Each model was
fine-tuned under identical experimental conditions (data
splits, learning rates, epochs, and augmentations). The
results of this comparison are provided in Table I1I.

Table 111: Comparison of CNN Architectures for DFU Classification

S. Model |Accuracy | Precision | Recall F1-Score
No. (%) (%) (%) (%)
1. VGG19 75.20 74.60 72.80 73.20
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2. | ResNet50 77.80 79.00 76.20 77.30

3. |DenseNet21 78.50 80.10 77.90 78.90
EfficientNet

4. B5 80.35 81.20 78.60 79.70
(Proposed)

The comparison clearly shows that EfficientNetB5
outperforms other models by a margin of 2-5% in all key
metrics. This improvement can be attributed to its
compound scaling strategy, which optimally balances
image resolution, network depth, and width, enabling
efficient feature extraction from medical images.
Additionally, fine-tuning with selective layer unfreezing
and the application of targeted augmentation on minority
classes further enhanced generalization, particularly for
complex ulcer cases that were underrepresented in the
dataset.

C. Visual Results and Class-Wise Analysis

To complement the quantitative evaluation, visual analyses
were conducted to gain deeper insight into the model’s
class-wise behavior and decision-making patterns. These
visualizations aid in interpreting prediction reliability,
error distribution, and clinical relevance across different
ulcer severity levels.

Figure 9 depicts the confusion matrix, providing a clear
overview of correct and incorrect classifications across all
four categories. The diagonal elements represent correctly
predicted samples, which dominate the matrix, signifying
robust classification capability. However, occasional
misclassifications between “Treatable within 4 Weeks”
and “Immediately Treatable” categories were observed—
an expected outcome due to their close visual resemblance
in wound texture and coloration.

Figure 10 illustrates the class-wise F1-score distribution,
emphasizing balanced model performance. The “Complex
Wounds” category, which initially suffered from limited
samples, showed a noticeable improvement after
augmentation, reaching an F1-score above 75%, validating
the effectiveness of our data balancing approach.

Figure 11 showcases qualitative test predictions,
highlighting the model’s ability to identify and
differentiate ulcer severity visually. The predictions
closely align with expert annotations, confirming that the
model captures subtle clinical features such as lesion
boundary irregularities and tissue discoloration.

D. Discussion of Findings

The results substantiate the hypothesis that a multiclass,
clinically guided deep learning model can achieve high
accuracy and meaningful interpretability for DFU
detection. Unlike prior works that focused mainly on
binary ulcer classification (e.g., ulcer vs. no ulcer), this
study introduces a four-class system that reflects real-
world medical categorizations, thereby enhancing clinical
decision-making.

Compared to previous studies such as [3], 2024 (accuracy
74.2%) and [2], 2021 (accuracy 82.4% but only binary
classification), our approach demonstrates superior clinical
granularity and balanced class performance. The
incorporation of transfer learning and fine-tuning on
EfficientNetB5  effectively  leveraged  pretrained
knowledge from ImageNet, allowing efficient learning
from limited medical data. Moreover, the data
augmentation  techniques—  particularly  brightness
adjustments and  rotation-based  variations—were
instrumental in reducing overfitting and improving the
network’s resilience to variable real-world image
conditions.

From a clinical standpoint, the system’s 80%+ accuracy
suggests that it can be effectively integrated as a screening
support tool rather than a replacement for expert diagnosis.
The mHealth integration (discussed in the next section)
demonstrates how this Al model can bridge the gap
between urban medical expertise and rural accessibility by
enabling early detection through smartphones.

Finally, the findings also highlight potential areas for
further improvement. While the model performs
consistently across most classes, additional efforts such as
ensemble methods, transformer-based architectures, or
attention mechanisms may further boost sensitivity for
difficult-to-detect lesions. Future clinical validation with
larger, more diverse patient populations will strengthen the
generalizability of these results.

E. Summary of the Results and Discussion

In  summary, the proposed EfficientNetB5-based
multiclass DFU detection model demonstrates:

o Robust performance across all ulcer categories
(overall accuracy: 80.35%).

o Effective handling of class imbalance through
augmentation.

e Clinically meaningful four-class categorization
for treatment prioritization.

e Superior performance over standard CNNs by up
to 5% on key metrics.

e Potential for real-world deployment within a
mobile health (mHealth) framework.

These results confirm that Al-driven wound assessment
systems can play a crucial role in early ulcer screening and
decision support in resource-constrained healthcare
settings.

V. MOBILE APPLICATION WORKFLOW

The mobile application implements a well-defined
workflow that begins with user registration and ends with
ulcer detection and result monitoring. Each step of the way
is facilitated with a user-friendly experience through
designated pages and simple navigation.

Figure 13 illustrates the workflow diagram of the mobile
application, outlining the sequential processes involved
from user input to diabetic foot ulcer classification and
result generation.
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Figure 13: Mobile Application Workflow Diagram

A. Application Features

a) User Registration/Login:
The app user can either go through the registration process
or simply log in using his/her credentials (Figure 14).
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Figure 14: Registration Page Ul

b) Redirect to Main Dashboard:
After the user has successfully logged in or registered,
he/she will be directed to the main dashboard (home
screen). On this screen, he/she will find a new section
called "Start Detecting," which is intended for users who
wish to begin the process of detecting ulcers, as well as the
user's previous records displayed as insights.

¢) Dashboard Features:

The dashboard contains a user-friendly interface with
several main components: a button to "Detect Ulcer,"
which starts the detection process, insight cards that reveal
the total detections, the number of positive results, and
one's current condition, a short list of doctors with their
names and emails, and a history preview that summarizes
the user's detection activity over time (Figure 15).
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Figure 15: Bilingual Feature
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d) Ulcer Detection Process:
The moment the user clicks on the "Detect Ulcer" button,
he/she is directed to another provided detection page. Here,
he/she is able to upload an image for analysis. The Al
model investigates the image on the lookout for an ulcer.
In case the result indicates a positive detection of an ulcer,
the app immediately displays the severity level (mild,
moderate, or severe) along with suggested next steps, such
as consulting a medical professional or following
recommended care instructions. The user can then save the

result to their History page for future reference, enabling
continuous monitoring and tracking of their condition over
time. Additionally, the app may provide visual markers on
the uploaded image to highlight the area where the ulcer
was detected, helping users better understand the analysis.
Figure 16 illustrates the user interface of the detection
page, highlighting the image upload functionality and the
real-time display of ulcer analysis and severity prediction
results.
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Figure 16: User Interface of the Detection Page, Showing the Image Upload Option and Real-Time Ulcer Analysis Results

e) History Page:
The History page is displayed to the user when they click
on the insight cards or select the "History" option in the
bottom menu. It is a full record of past ulcer detections that
includes the date, result, and severity level so users can
keep track of their condition over time.

B. Model Integration

For the smart detection features, the app's Al model runs
on a Flask server. The process is very straightforward to
ensure that users will receive feedback soon after they
upload.

a) Flask API Integration:
The app communicates with a Flask backend that
incorporates the Al model. It sends images from the app
and receives detection results in return.

b) Real-Time Feedback:
The moment a prediction is made, the app interface
displays the results like magic, thereby granting the user
instant access to output

c) Device Testing:
The app was tested on both emulators and actual devices
to uncover and resolve any issues with design or
performance.

C. Deployment

The application went through a process of careful
packaging, testing, and publishing in order to be ready for
public use.

e APK Generation: A signed APK was generated
using React Native CLI, ensuring that it was
ready for installation on Android devices. The
build process included optimizations to reduce
the app size and improve performance.

e Play Store Publishing: A Google Play Developer
account was created, and all necessary
information,  including app  description,
screenshots, and privacy policy, was provided.
The app was then successfully published through
the Play Console, making it accessible to users
worldwide.
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D. Testing and Debugging

We conducted thorough testing under various real-world
scenarios to confirm that the application performed well
and delivered the expected results.

e Unit & Integration Testing: Each component of
the application was individually tested, followed
by integration testing to ensure that all parts
worked seamlessly together.

e  Code Optimization: Proguard rules and additional
measures were applied to secure the code and
make the build more efficient.

e Real Device & Emulator Testing: The app was
tested on multiple devices and emulators to
identify layout, performance, and compatibility
issues.

e Error Logging & Monitoring: Logging
mechanisms were implemented to monitor
crashes and errors, allowing quick identification
and fixing of issues.

E. Challenges Faced

There were several practical difficulties encountered by the
team during the development of the mobile app, which
required thoughtful problem solving and endless
improvisation.

a) Cross-Platform-Compatibility:
The task of making the application appear and function the
same in a uniform manner on various Android devices was
not an easy one all the time. Different sizes of screens
along with OS versions now and then created layout issues,
thus, we had to put in more time to rectify the design and
conduct testing.

b) APl Communication and Error Handling:

The process of linking the mobile application to the
Node.js backend along with the Flask server was not that
smooth as we had expected. There were times during the
testing process when the upload of images would fail or the
detection results would be returned incorrectly. This led us
to enhance the existing error handling and make the app
more robust against minor network issues.

c) Authentication Integration:

Our goal was to allow users to choose between the regular
email/password method and the simpler Google sign-in
method. However, to allow both to operate securely side-
by-side meant that we had to meticulously handle session
tokens and ensure that they did indeed function properly
across various devices.

Figure 17 illustrates the sequence diagram of the
authentication process, detailing the interaction flow for
both  email/password and Google-based sign-in
mechanisms.

Actor WebApp AuthService
Login —

Validate credentials

P

! Validation response

-

SUCCESS Message

Lifelina Lifeline Lifatine

Figure 17: Sequence Diagram of Authentication

d) Model Accuracy and Image Quality:

The detection model's accuracy was largely influenced by
the manner in which users captured the pictures of their
feet. Lighting that was too poor, angles that were wrong,
or unclear pictures now and then resulted in incorrect
output. One of the solutions we came up with was to
prompt and advise users on how to take better pictures,
thus improving both the usability and the accuracy of the
detection.

e) Deployment and APK Signing:
Releasing the app was the moment when the creation of a
ready-to-use APK was faced with multiple hurdles. The
setup of the keystore, the signing of the build, and making
sure that everything was safe and operational required a
thorough step-by-step process.

F. Future Work

Looking forward, we have quite a number of significant
improvements we will want to consider for both the mobile
and web platforms to make the system more powerful,
easier to use, and scalable:

o Offline Detection Capability: Access to the
internet is often restricted or unreliable in a lot of
rural and remote areas. The mobile app will come
with a feature for offline detection as a part of the
system to eliminate this hurdle. Therefore,
patients will be able to conduct an ulcer screening
on their devices without an internet connection
being active.

o Real-Time Telemedicine Features: The system
will utilize telecommunications in real-time, for
instance, chat and video consultations. This will
enable quick and easy connection between the
patients and the doctors. They can ask for help
right away, describe their physical problems, and
get tips without going out of their homes.

e Integration with Wearable Health Devices: The
system will include smart insoles and similar
devices, which are one of the types of wearable
that will be connected to it. These insoles measure




Al-Powered Early Detection of Diabetic Foot Ulcers: Integrating Deep Learning and Clinical Insights

both the foot's temperature and pressure. They are
always keeping track of the patient's health, and
giving out warnings before the formation of
ulcers.

e Improved Accessibility and Language Support:
Eliminating all barriers and making the system
usable for every person is extremely crucial.
Future releases will be equipped with extensive
local language support for Pakistan, such as
Punjabi, Sindhi, Pashto, and Balochi. This will
facilitate people of diverse cultures and languages
to operate the system with ease.

e Expanding Disease Detection to Other
Conditions: The system will not be restricted to
only diabetic foot ulcers detection but will also be
directed to identify other diseases in poor and at-
risk communities. The diseases include
leishmaniasis,  conjunctivitis, and  acute
respiratory infections. The main and primary
focus will be in regions that are hit by floods or
other disasters, which mostly lead to the outbreak
of diseases. Timely detection of such diseases can
mitigate the health risks.

VI. CONCLUSION

This section presents a summary of the entire Diabetic Foot
Ulcer (DFU) detection project. It also provides a
description of the aims, results and major outcomes. The
project aimed at employing the techniques of image
processing and machine learning to design a system that is
able to detect and classify DFUs quickly and accurately.
The system utilized both clinical images and public
datasets to not only enhance the existing methods but also
provide better care to the patients. In order to tackle
challenges like poor image quality and imbalanced data,
preprocessing steps were taken. These steps included noise
reduction, image resizing, and data augmentation through
adding more data. All these activities contributed to
making the machine learning models more stable and
trustworthy.

One of the important accomplishments of the project was
to shift from basic two-class detection (i.e., ulcer or no
ulcer) to a multiclass system. This allowed the model to
differentiate among no infection, mild, moderate, and
severe cases. Consequently, the physicians could receive
clearer and more comprehensive outcomes to facilitate
their decision-making.

State-of-the-art machine learning models were applied to
the system making it more scalable, accessible, and
valuable. The findings supported that with good-quality
data and powerful algorithms DFU detection could be
more precise and productive.

However, the project also experienced certain limitations.
The available data sets were not highly diverse or
balanced. Moreover, real-time application was also
difficult. The project, therefore, recommends, among other
things, the collection of more data, the conduct of clinical
trials for testing the system, and the improvement of the
system for it to work on and be supported by mobile and
other low-resource devices.

VIl. FUTURE WORK

The following enhancements and developments are
planned to make the system more robust, accessible, and
useful for both patients and clinicians:

e Enhance Model Performance through Advanced
Techniques:

To enhance model performance and at the same time
understand the system's features of the ulcer even better,
advanced deep learning methods such as ensemble
learning and transformer models are applied. Also, real-
time performance on mobile phones would be maintained.
The use of CNN optimizers would lead to a higher
accuracy of detection as well.

o Implement Offline Functionality:
The focus of subsequent studies may be the enhancement
of offline capabilities, through the use of edge technology,
and lightweight models that are portable for mobile
devices, consequently ensuring operability even in areas
with no internet connection. This would completely
remove cloud processing and allow the application to
perform image analysis for ulcer detection.

e Incorporate Additional Health Parameters:
The app could be a greater asset to patients by diagnosing
not only the diabetic conditions but also their related ones
like poor circulation and skin condition. With these new
functions, the app will be a comprehensive clinician's tool
to assist the overall management of diabetic foot problems.
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