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Abstract 

Diabetic Foot Ulcers (DFUs) are among the most severe complications of diabetes and can lead to infections, amputations, and increased 

mortality if not detected early. This study presents an AI-based multiclass DFU detection system using a convolutional neural network built 

upon the EfficientNetB5 architecture to classify foot images into four clinically relevant categories: no ulcer, immediately treatable, treatable 

within four weeks, and complex wounds. A curated dataset of 6,247 foot images was constructed from public and clinical sources through 

expert-guided manual filtering and annotation. Comprehensive preprocessing, including noise removal, normalization, resizing, and 

targeted data augmentation, was applied to address image quality issues and class imbalance. The proposed model achieved an overall 

accuracy of 80.35%, with a macro-averaged precision of 81.2%, recall of 78.6%, and F1-score of 79.7%, demonstrating balanced 

performance across all classes. The system is further integrated into a mobile health application to support early DFU screening, offering 

a scalable and low-cost solution for resource-constrained healthcare settings. 

 
Index Terms: Convolutional Neural Networks, Deep Learning, Diabetic Foot Ulcers, Medical Imaging, and Mobile Health Application. 

 

I. INTRODUCTION 

A. Background Information 

Diabetes or the health problems caused by it, for example, 

diabetic nerve damage, is a big concern all over the world. 

The number of people with diabetes in Pakistan alone 

exceeds 33 million. Many of them are not getting the 

required medical help. The situation is worse in the 

countryside where health facilities are scarce, and the ones 

that exist do not always spot the initial signs of diabetic 

foot wounds. Diabetic foot wounds are very perilous 

because, if not detected in time, they can become serious 

enough to require surgery or even amputation. 

To fight this problem at an early stage, a mobile application 

that is easy to use is under development. The app is based 

on artificial intelligence and imaging technology and 

works by taking plus analyzing photos to timely detect foot 

wounds. The idea here is to equip community health 

workers, patients to manage the wounds and hence reduce 

the pressure on the hospitals and clinics that are already 

burdened with work by the doctors and staff. 

B. Motivation and Significance 

Diabetes and its complications like neuropathy are serious 

issues that affect a lot of people all over the world and is 

therefore considered a major public health problem 

globally. In Pakistan, diabetes affects more than 33 million 

people, and a large part of them, especially in rural areas 

and places with limited resources, go undiagnosed or 

untreated. A lack of specialized medical services and the 

slow clinical-response often lead to detection of Diabetic 

Foot Ulcers (DFUs) at advanced stages. DFUs at a late 

stage can be a cause of severe infections, usually resulting 

in long hospital stays, and in very rare cases, amputation, 

all of which are a serious burden not only on patients but 

also on the health care systems. The point is that early 

detection and prompt treatment are then necessary to 

minimize complications and to make patient health 

outcomes better. This research was triggered by these 

issues, and it intends to introduce a convenient and easy to 

use mobile-based diagnostic tool that utilizes image-based 

analysis and deep learning methods to detect DFU very 

early. The proposed system, through a mobile Health 

(mHealth) platform enabling fast screening, is a great 

potential to not only support health professionals, provide 

patients with power, and also improve the accessibility of 

early diagnostic aids in the areas with limited resources. 

C. Problem Statement 

Diabetic Foot Ulcers (DFUs) are one of the main causes of 

infections and amputations that are preventable, especially 

in places with low resources such as rural areas, where 

trained medical staff and diagnostic facilities are hard to 

find or completely absent. The current clinical practice is 

mainly dependent on manual visual inspection, which is 

subjective, takes a long time, and is often delayed because 

of patient inaccessibility or lack of awareness. Automated 

image-based methods for DFU detection have been 

studied; however, most of the existing systems concentrate 

only on binary ulcer classification, and thus, they do not 
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offer clinically meaningful severity-based categorization. 

Moreover, the problems of class imbalance, variability in 

real-world image quality, and limited deployment within 

practical healthcare applications diminish their 

effectiveness in real-world settings. This paper, therefore, 

identifies the lack of an accurate, clinically relevant, and 

deployable multiclass DFU detection system capable of 

classifying foot images by ulcer severity and treatability 

while supporting early screening through mobile-based 

solution as the core problem to be solved. 

D. Research Contribution 

Existing studies that have been conducted so far on 

diabetic foot ulcer detection mainly deal with binary 

classification or use datasets that are limited in size and do 

not sufficiently represent the varying degrees of ulcer 

severity that are relevant in the clinics. Numerous methods 

give weight to classification accuracy and thus do not 

consider matters like class imbalance, the difficulties of 

real-world deployment, and the everyday integration of 

such systems in the clinics. However, this research 

introduces a clinically oriented multiclass DFU 

classification system that classifies foot photographs into 

four classes based on severity and treatability. The 

proposed method employs expert-guided dataset curation, 

targeted augmentation of minority classes, and balanced 

performance evaluation to guarantee robustness across all 

categories. 

 Moreover, the deep learning model that is trained is 

incorporated into a mobile Health (mHealth) application 

with telemedicine support, which facilitates the 

deployment of early screening and decision support in 

under-resourced areas. What makes this paper exceptional 

is the combination of severity-aware multiclass 

classification, robust preprocessing for real-world data 

variability, and practical mobile deployment, which in 

turn, improves the clinical applicability of automated DFU 

detection systems. 

E. Paper Organization 

This paper comprises seven (7) sections. Section I presents 

the introduction to this research study, including the 

background, problem statement, and key research 

contributions. Section II reviews related work on diabetic 

foot ulcer detection, highlighting existing methodologies 

and their limitations. Section III details the proposed 

methodology, including dataset preparation, preprocessing 

techniques, and model development. Section IV presents 

the results and provides a comprehensive discussion of the 

findings. Section V outlines the mobile application 

workflow and system integration, demonstrating the 

practical implementation of the proposed model. Section 

VI concludes the paper by summarizing the key outcomes 

and discussing their significance. Finally, Section VII 

outlines future work, focusing on expanding the dataset, 

integrating advanced deep learning models, and 

incorporating real-time monitoring and wearable sensors 

to enhance system accuracy, usability, and patient care. 

II. LITERATURE REVIEW 

A. Summary of Existing Research  

Automated detection of Diabetic Foot Ulcers (DFUs) has 

attracted considerable research attention due to the clinical 

importance of early diagnosis and prevention of severe 

complications. Initial approaches relied on traditional 

image processing techniques combined with machine 

learning classifiers. However, recent advancements have 

shifted the focus toward deep learning–based solutions, 

particularly Convolutional Neural Networks (CNNs), due 

to their ability to automatically extract discriminative 

features from medical images [1], and [2]. 

Several studies have demonstrated the effectiveness of 

CNN architectures such as VGG-19, ResNet, DenseNet, 

and EfficientNet for DFU detection and classification [3]. 

Publicly available datasets, especially the Diabetic Foot 

Ulcer Challenge (DFUC) datasets and Kaggle repositories, 

are widely used to train and evaluate these models [4]. 

Transfer learning has been extensively applied to 

overcome the scarcity of labeled medical data, enabling 

models pretrained on large datasets to generalize 

effectively to DFU detection tasks. Model performance is 

typically assessed using metrics such as accuracy, 

precision, recall, F1-score, ROC- AUC, and sensitivity [5-

7], [17], and [18]. See Table I for better understanding. 
 

Table I: Summary of Reviewed Literature on DFU Detection 

S. 

No. 
Parameter Count 

1. 
Total Number of Papers 

Reviewed 
25 

2. 
Total Preprocessing 

Techniques Discussed 
19 

3. 
Total Machine Learning 

Models Evaluated 
12 

4. Most Common Dataset Used DFUC (2020 & 2021) 

5. 
Performance Metrics 

Analyzed 

6 (Accuracy, Precision, 
Recall, F1-Score, ROC-

AUC, Sensitivity) 

B. Datasets and Preprocessing Approaches 

The development of DFU detection models heavily relies 

on datasets. Researchers accessed more than 2000 images 

coming from the DFUC 2020 dataset that contains both 

ulcerative and non-ulcerative cases [1]. Two researchers 

worked on a denoised subset of the DFUC dataset through 

CNN-based denoising techniques to improve the quality of 

the images [2]. Likewise, analysts employed a Kaggle 

dataset of 2674 images for the classification based on 

EfficientNet [3]. The preprocessing techniques are a 

common method for enhancing the quality of the data as 

well as the robustness of the model. They include resizing 

of images, noise removal, contrast enhancement, and data 

augmentation [8], Authors tried noise reduction, image 

scaling, and augmentation to make generalization stronger 

[4] while in another study which utilized resized images to 

224×224 pixels to ensure that they matched the input 

requirements of EfficientNet and ResNet architectures [3]. 

Some authors pointed out the role of contrast enhancement 

in the DFU detection performance improvement [8] while 

some other researchers were concerned with artifact 

removal that would lead to noise reduction during training 

[9]. Figure 1 shows ml model usage in research papers. 
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Figure 1: ML Model usage in Research Papers 
 

C. Deep Learning Models and Performance Metrics 

Deep learning models are capable to detect complex 

patterns in medical images; thus they are the best solution 

for Diabetic Foot Ulcer (DFU) detection. Among them, 

Convolutional Neural Networks (CNNs) stand out, 

especially the ones like DenseNet, VGG-19, ResNet, and 

EfficientNet. According to researchers, various object 

detection networks were examined to attain optimal 

detection of DFU [1]. Authors achieved an impressive 

94.2% accuracy by using EfficientNet [3]. Likewise, in 

another study which showed the potentiality of 

DenseNet201 by attaining high F1 scores and accuracies 

across different data [4]. 

Researchers enhanced their dataset by applying noise 

removal, image scaling, and augmentation to improve 

variability and generalization. Some authors standardized 

the images to a resolution of 224×224 pixels to ensure 

compatibility with models such as EfficientNet and ResNet 

[3]. Other researchers, employed advanced contrast 

enhancement techniques to improve model performance 

[8], while in another study which focused on removing 

artifacts to reduce noise during training [9]. 

One of the key factors in these models is feature extraction, 

and transfer learning techniques are generally applied. To 

give a clearer idea, a study took the weights of EfficientNet 

and ResNet which were pre-trained for DFU detection [3]. 

The efficiency of the deep learning model is mostly 

measured in terms of accuracy, precision, recall, F1 score, 

and ROC-AUC. Some analysts recorded an accuracy of 

82.4% and sensitivity of 69.2% for their CNN model, 

which is indicative of a balance between true and false 

positives [2]. However, there are still some challenges that 

remain such as excessive fitting, limited transferability of 

datasets, and insufficient testing in real conditions that are 

mentioned by researchers [1], and [8]. 

D. Identified Research Gap and Link to the Proposed 

Work 

Despite notable progress, the existing literature reveals 

several limitations. First, the majority of DFU detection 

studies focus on binary classification, which limits clinical 

usefulness by failing to distinguish ulcer severity or 

treatment urgency [2]. Second, class imbalance, 

particularly the under-representation of severe ulcer cases, 

is often insufficiently addressed, resulting in biased model 

performance [4]. Third, many studies prioritize 

experimental accuracy without considering real-world 

deployment, mobile integration, or accessibility in 

resource-constrained environments [10-12]. Furthermore, 

while advanced techniques such as ensemble learning, 

attention mechanisms, and segmentation have improved 

detection accuracy, few studies integrate these models into 

deployable healthcare systems that support early screening 

and clinical decision-making. These gaps directly relate to 

the research problem addressed in this study. 

To overcome these limitations, the present work proposes 

a clinically relevant, severity-aware multiclass DFU 

detection framework that classifies foot images into four 

treatment-oriented categories. The proposed approach 

combines expert-guided dataset curation, targeted 

augmentation of minority classes, robust preprocessing, 

and balanced performance evaluation, and is integrated 

into a mobile Health (mHealth) application to support early 

screening and telemedicine-assisted decision support in 

resource-constrained settings [13-21]. 

 

 

 
Figure 2: Flowchart Illustrating the Systematic Process used to Identify 

the Research Gap and Define the Proposed Solution 
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The systematic process used to identify the research gap 

and define the proposed solution is illustrated in Figure 2. 

Recent work in diabetic foot ulcer analysis highlights the 

rapid evolution of AI-based diagnostic tools. A research 

(2025) provide a systematic review of AI/ML 

classification techniques, underscoring accuracy ranges 

and current challenges in real-world datasets [22], while in 

another study (2025) which highlight emerging trends in 

ML/DL segmentation and detection frameworks [23]. 

Hybrid models combining CNN feature extraction with 

ELM classifiers have shown competitive performance in 

DFU classification, emphasizing the value of ensemble 

strategies. Other studies explore ensemble detection 

pipelines, leveraging multiple network outputs to improve 

localization accuracy of ulcer regions. Additionally, 

approaches integrating thermal imaging and deep learning 

suggest multimodal detection strategies that may enhance 

early diagnostics. Compared to these, the proposed 

EfficientNetB5-based multiclass framework not only 

achieves competitive accuracy but also provides fine-

grained clinical categorization for ulcer severity — a 

feature less emphasized in existing works [24], and [25]. 

III. METHODOLOGY 

This section describes the end-to-end research framework 

adopted for the development of a severity- aware Diabetic 

Foot Ulcer (DFU) detection system and its deployment 

through a mobile health platform. The overall workflow of 

the proposed methodology is illustrated in Figure 3, which 

outlines the sequential stages from data annotation to 

system deployment and user access. 

 

 

 

 
 

 

 

Figure 3: Overview of the Proposed End-To-End Research Framework for Severity-Aware Diabetic Foot Ulcer Detection and mHealth Deployment 

 

A. Data Collection 

The data retrieval period was very important during the 

modeling process. The section highlights the different 

classification activities, the problems faced during the 

gathering and refinement of the data, and the ethical issues 

that were considered to maintain the integrity of the data 

and the confidentiality of the patients. The dataset was 

handpicked in a manner that it will be beneficial for the 

project aimed at developing very deep learning models that 

will accurately identify DFU, with accessibility and 

scalability as the main focus, especially for the 

underprivileged people in Pakistan. The method of data 

collection was custom-made for multi-class, which was the 

same as the aim of the project to provide exact and useful 

diagnostic recommendations. 

B. Data Sources 

To verify Diabetic Foot Ulcer (DFU) detection, the project, 

with its CNNs, considered the task of multiclass 

classification as the hardest. Aircraft's task of classifying, 

the by severity and treatability, was Pierson solely based 

on the Octdaily dataset. The dataset given by Oct-Daily 

contained 18,000 raw images of different kinds of wounds 

from various positions, showing a total of four: Complex 

wounds, immediately treatable, No ulcer, and Treatable 

within 4 weeks. The images of the dataset were wide-

ranging, with non-foot wounds being included amongst 

them. Hence, a manual cleaning process was done with the 

help of medical experts to obtain foot-specific images that 

are relevant to DFU detection. The dataset went down to a 

total of 4,916 images after the cleaning process, as shown 

in Figure 4 (Class Distribution of the Oct-Daily Dataset), 

which are separated as follows: Complex wounds (225 

images), Immediately treatable (1,827 images), No ulcer 

(924 images), and Treatable within 4 weeks (1,940 

images). The medical professionals monitored the pictures 

during the annotating process to maintain clinical 

accuracy, and this was in favor of the project which aimed 

at classifying ulcers by severity and treatability for more 

accurate diagnostic outcomes. The multi-class dataset was 

made in such a way that the model would be able to 

differentiate between the different ulcer stages which, in 

turn, would enhance the model's applicability for patients 

and healthcare providers in Pakistan's neglected areas. 
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Figure 4: Composition of Multi–Classification Dataset 
 

The process of collecting and preparing the data to train a 

good deep learning model posed many difficulties. The 

dataset was chaotic and dirty, thus quite difficult to be 

classified into multiple groups. Initially, there were 18,000 

images, but many depicted wounds on parts of the body 

besides feet, like arms, legs, or chest and so could not be 

used for foot ulcer detection. Manual filtering left only 

6,247 images of feet. This operation was painstakingly 

slow and required a tremendous amount of work since each 

image was to be scrutinized meticulously and medical 

experts were called in to confirm the final selection. 

Besides, there was a significant possibility of errors due to 

human factors, particularly when the wounds on the feet 

were very similar to others. Another serious problem was 

uneven distribution of data — the Complex wounds 

category had only 225 images but the others had thousands 

like Treatable within 4 weeks (1,940 images). This 

predominance might lead to the model becoming partial, 

so some methods, such as rotation and flipping of images, 

were applied to augment the data. 

C. Data Cleaning and Preparation 

 

a) Data Annotation for Multi Classification: 

To make sure the model works correctly and gives useful 

medical results, Important data cleaning steps were done 

before training began. We filtered the images by clinical 

Insights, labeled by doctors to category carefully, and 

combined the data to build a clean and reliable dataset that 

fits the project needs. 

 

b) Manual Filtering of Images: 

The initial dataset came from Oct-Daily and included more 

than 18,000 raw images of diabetic wounds located in 

various body parts. As our primary interest was in diabetic 

foot wounds, the data had to be filtered manually. With the 

help of professionals and medical experts, particularly 

podiatrists, we scrutinized each image and picked out only 

the ones depicting foot wounds. This procedure was 

critical for eliminating non-related pictures thereby 

decreasing errors in the data which contributed to the 

model's accuracy and results improvement. 

c) Class Labeling: 

The multiclass dataset comprises of four categories:  

 

• Immediately Treatable (1,827 images), 

• No Ulcer (924 images),  

• Complex Ulcer (1,556 images), and  

• Treatable Within 4 Weeks (1,940 images). 

 

d) Final Dataset Composition: 

As a result of manual filtering and labeling of the images, 

a final dataset was obtained consisting of clear and useful 

foot images that were in line with our research goals. The 

number of selected and labeled images was 6,247. The 

images were further divided into four classes for multi-

class classification. This dataset served as the principal 

source for training, testing, and validation of the model. 

Not only did it refine the data quality, but also the model 

was able to exceed medical application performance. 

 

e) Data Preprocessing: 

The most crucial factors for machine learning models are 

data consistency and quality, particularly when it comes to 

medical imaging where minute details could alter the 

diagnosis. To get the photos ready for training, testing, and 

model evaluation, the authors used a few straightforward 

data preparing techniques. A balanced dataset, image 

consistency, and an improvement in overall image quality 

were all made possible by the operations. 

 

1. Noise Removal: 

Noise in medical images can cover important details. This 

makes it difficult for the model to detect and classify ulcers 

in the right way. 

The dataset frequently had background artifacts, anomalies 

in the scanning process, and unrelated objects. To address 

these issues, we used noise reduction.  

We applied methods such as median and Gaussian 

filtration. These filters preserved crucial characteristics, 

such as skin texture and ulcer borders, while reducing 

undesired pixel noise. 
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2. Image Scaling: 

We scaled every image to 456 × 456 pixels to maintain 

consistency throughout the collection. EfficientNetB5 

requires this input size. Because CNN models require fixed 

input dimensions to function properly, standardizing image 

size is crucial. The 456 x 456 dimension was selected 

because it strikes a decent mix between quickness and 

preserving crucial features. In medical pictures, such as 

ulcer diagnosis, this is crucial. The primary ulcer features 

were preserved with minimal distortion after resizing. 

Additionally, it facilitated batch processing and improved 

the model's performance during testing, validation, and 

training (Figure 5). 

 

 
Figure 5: Image Resizing Process 

3. Normalization: 

Normalization is a crucial preprocessing step for 

EfficientNetB5 image training. It ensures that the model, 

which was pretrained on the ImageNet dataset, fits the 

input data. Usually, this begins by adjusting the pixel 

values to match the range that the model anticipates, 

resizing each image to 456 × 456 pixels (the input size 

required by EfficientNetB5), and converting the image 

data to a float32 format. The pixel values, which originally 

range from 0 to 255, are then passed through the 

preprocess_input function from Keras' EfficientNet 

module.  

 

This function scales the pixel values to a range of: 

 

                             x = (
x

127.5
) –  1                               (1) 

 

In addition to ensuring that the input distribution is 

comparable to what the network saw during its initial 

pretraining on ImageNet, this normalization speeds up the 

model's convergence throughout training. In the absence of 

this step, mismatched input distributions would typically 

cause the model's performance to deteriorate. 

Figure 6 shows the pixel intensity distributions of the DFU 

images after preprocessing and normalization, highlighting 

how the values have been scaled to match the input 

requirements of EfficientNetB5.

 

 

 
 

Figure 6: Pixel Intensity Distributions of the Preprocessed DFU Images       

 

4.    Data Augmentation: 

A major problem was class imbalance, especially because 

complex cases like severe ulcers were underrepresented. 

Targeted data augmentation techniques were applied 

solely to the minority class in order to boost class diversity 

and artificially increase its size.  

 

These techniques included: 

 

• Rotation: Simulated different viewing angles by 

rotating the images. 

• Flipping: Applied both horizontal and vertical 

flips to enhance visual variability. 

• Scaling: Introduced spatial variation by resizing 

images at different scales. 

• Brightness Adjustment: Modified lighting 

conditions to reflect real-world scenarios. 

• Random Resizing: Created size variations while 

preserving key features of the ulcers. 

 

Through these augmentation strategies, the number of 

samples in the complex (severe) class increased from 255 

to 1,556, resulting in a more balanced dataset. This 
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improvement not only mitigated the class imbalance but 

also enhanced the model’s robustness and generalization 

performance when exposed to unseen data. 

 

5.    Gaussian Blur Application: 

Gaussian blur was applied as a preprocessing step to 

enhance image quality and eliminate noise. This technique 

uses a Gaussian filter to average the values of neighboring 

pixels. It aids in minimizing excessive detail and subpar 

elements that are frequently present in medical 

photographs. The blur eliminated noise that may have 

distracted the model while preserving the crucial structure 

of the ulcers. The model became more robust and 

dependable as a result. 

By using Gaussian blur, the system was able to focus on 

the key features of ulcers and learn them better, see Figure 

7. 

 
 

Figure 7: Gaussian Blur Applied to an Image 

D. Model Development 

 

a) Architecture: 

In this study, the EfficientNetB5 model is employed. It is 

a convolutional neural network that uses little processing 

power and provides excellent accuracy. Compound scaling 

is a unique technique used by EfficientNet. This technique 

balancedly increases the input image size, width, and depth 

(layers). These components are typically scaled by other 

CNN models without a clear rule, which frequently results 

in resource waste. One of the bigger models in the 

EfficientNet family is EfficientNetB5. Larger input photos 

and more layers are used. In order to grade the severity of 

diabetic foot ulcers, this aids the model in learning minute 

details from pictures. Mobile inverted bottleneck 

convolution blocks, which help lower the number of 

parameters and improve the model's efficiency, are used in 

its construction. The EfficientNetB5 Architectures is 

shown in Figure 8. 

 

b) Justification of Model Choice: 

Experiments have demonstrated that EfficientNet models 

perform better than other CNNs like ResNet, DenseNet, 

and Inception on a variety of benchmark datasets, 

including medical pictures. When utilized for wound 

inspection and ulcer categorization, EfficientNet offers 

improved accuracy and generalization. This is due to the 

model's ability to learn efficiently at multiple sizes 

according to its compound scaling technique.  

 
 

 

 
 

Figure 8: EfficientNetB5 Architectures 

 

Additionally, pretraining improves EfficientNetB5's 

performance. Further the large ImageNet dataset yields a 

strong transfer learning environment, whereby the model 

can take advantage of learned low- and mid-level features, 

which are portable to medical images, with minimal 

annotated data. This minimizes the requirement of large 

training data and enhances convergence rate. Generally, 

EfficientNetB5's efficiency- accuracy-scalability tradeoff 

presents it as a fitting choice for this ulcer classification 

task. 

c) Model Training: 

Hyperparameter tuning and data splitting are key tasks 

involved in model training. The EfficientNetB5 model 

training phase consists of these steps. How these 

procedures aid in creating an effective classification 

system is explained below. 

 

1.   Training-Validation-Test Split: 

The three mutually exclusive subsets of the data set that 

were split by 80%, 10%, and 10%, respectively, were 
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training, validation, and testing. The split maintains a 

sufficient number of samples for accurate model 

performance estimates while enabling the maximum 

amount of data to be used for learning. 

 

• Training set (80%): Used to iteratively learn 

from labeled photos in order to determine the 

optimal model parameters. During training, 

the validation set (10%) is used to monitor the 

model's performance against out-of-sample data 

and to guide the selection of hyperparameters to 

avoid overfitting. 

• Test set (10%): To maintain the original class 

distribution, stratified sampling was used for the 

split. Class distribution among all subsets were 

done in such a way that each set captures the 

complete diversity of the dataset, unseen data. 

The split was done using stratified sampling so as 

to preserve the initial class distribution among all 

subsets in such a way that each set captures the 

complete diversity of the dataset. 

 

2. Hyperparameters and Configuration: 

The model was trained and optimized with the following 

hyperparameters:  

 

• Architecture: EfficientNetB5, pre-trained 

trained on ImageNet and then fine-tuned on the 

diabetic foot ulcer dataset. Input size: the model 

is automatically resized to465*465pixels. 

• Input Dimensions: 456 × 456 pixels to 

EfficientNetB5dimensions. 

• Batch Size: Every training batch needs to contain 

32 images. 

• Epochs: 50 epochs are employed to provide 

sufficient iterations to learn patterns without 

overfitting. 

• Optimizer: Adam optimizer with a initial 

learning rate of 0.0001, due to its capacity to 

adjust gradients. 

• Loss Function: Multi-class cross-entropy for 

categorical classification. 

• Early Stopping: Employed patience of 5 epochs 

to stop training if validation loss fails to improve 

to avoid overfitting. 

• Learning Rate Scheduler: Reduced the learning 

rate by a factor of 0.1 when the plateau of 

validation loss was reached for 3 consecutive 

epochs to enable fine-tuning of weights. 

• Data Shuffling: At each epoch, random batches 

were made to avoid bias. The parameters below 

were chosen based on past studies and tests to 

improve the model’s performance for diabetic 

foot ulcer classification. 

 

3. Training Environment: 

Training was performed on the Kaggle Cloud platform 

leveraging its GPU computing power to speed up model 

training. 

 

• Equipment: NVIDIA Tesla P100 Graphics 

Processing Unit with 16 GB virtual random- 

access memory providing the computational 

capability to train deep neural networks using 

high-definition images. 

• Software stack: Python 3.8 development 

environment supported by TensorFlow 2.x and 

Keras deep learning frameworks. 

• Operating System: Linux from Kaggle. GPU 

acceleration was enabled through pre- installed 

CUDA and cuDNN libraries optimized for GPU 

usage within the Kaggle environment. 

 

Training duration was approximately 6 hours for 50 

epochs, depending on batch size and dataset volume. This 

setup facilitated quick prototyping and experimentation 

with no local hardware needs, accelerating research 

workflow. 

 

d) Model Evaluation: 

 

1. Performance Metrics (Accuracy, 

Precision, Recall, F1-score): 

The performance metrics of accuracy, precision, recall, 

and F1-score were used to measure the effectiveness of the 

EfficientNetB5 model. The four medical classes can be 

separated by the model, as these metrics reflect. The 

classification report from scikit-learn revealed the test set's 

results. It showed, among other things, the aggregate 

(macro) and individual class results. 

 

2. Confusion Matrix: 

In order to demonstrate the ability of the classifier to make 

correct and incorrect predictions across all four classes, a 

confusion matrix was employed.  
Figure 9 presents the confusion matrix depicting the class-

wise prediction performance of the proposed classifier 

across four diabetic foot ulcer categories, highlighting 

correct classifications and misclassification patterns 

among the classes. 

 
 

 
 

Figure 9: Confusion Matrix Illustrating the Class-Wise Prediction 

Performance of the Proposed Classifier Across Four Diabetic Foot Ulcer 
Categories 
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3. Class-Wise Evaluation: 

The performance of the model was analyzed separately for 

each class to assess its effectiveness across different ulcer 

severity categories.  

This analysis highlights accuracy, precision, recall, and 

F1-score for each ulcer severity category. 

Figure 10 illustrates the class-wise evaluation of the 

EfficientNetB5 model’s performance on the diabetic foot 

ulcer dataset, presenting key metrics that reflect the 

model’s effectiveness across individual ulcer categories. 

 

 
 

 

 
 

Figure 10: Class-Wise Evaluation of the EfficientNetB5 Model Performance on the Diabetic Foot Ulcer Dataset 
 

4. Example Test Predictions: 

As a part of qualitative analysis, we gave indicative test 

images as well. The displayed images were provided with 

both the actual labels and the predicted labels. The actual 

label is the correct category that was assigned by the 

medical professionals while preparing the data. The 

predicted label is the label where the model's central 

performance and mistakes are easily visible. 

Test predictions are utilized to evaluate the trained model’s 

performance on unseen data, providing an objective 

assessment of its generalization capability and 

classification accuracy (Figure 11).

 

   

Figure 11: Test Predictions for Model Evaluation 

 

E. Fine Tuning of Model 

This is the narrative of fine-tuning a pre-trained 

EfficientNetB5 model, which initially had 74% accuracy, 

on the Diabetic Foot Ulcer (DFU) dataset. The aim of the 

project was to achieve better results from the model, which 

would be able to categorize the images of the foot ulcers 

into four classes: Immediately Treatable, No Ulcer, 

Complex Wounds, and Treatable Within 4 Weeks. Fine-

tuning was performed through the model architecture. 

 

a) Model Configuration: 

The base model EfficientNetB5, which had been pre-

trained, was not entirely fixed but made partially trainable 

by allowing the last 30 layers to be unfrozen while the 

earlier layers were kept frozen so that the features could be 

retained. The model was then trained again with Adam 

optimizer, learning rate 1e-5, categorical cross-entropy as 

the loss function, and accuracy as the measurement metric. 

This included change, hyperparameter tuning, and data 

augmentation application to increase generalization. 
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b) Class Weighting: 

The class weights for class imbalance were determined 

using Scikit-learn's compute_class_weight function. The 

final weights were: 0.68 for wounds that need immediate 

treatment, 1.34 for no ulcers, 0.80 for complex wounds, 

and 0.64 for treatable within four weeks. The classes that 

were least represented were misclassified, and the training 

was done using these weights, thus penalizing the under-

represented classes. 

 

c) Training Setup: 

The model underwent fine-tuning for 30 epochs with a 

mini-batch size of 16. The use of mixed precision training 

allowed for better usage of resources.  

 

The following callbacks were utilized: 

 

• Model Check point: 

 /Kaggle/working/best_model_finetuned.h5, 

saved the optimum model weights according to 

validation accuracy. 

• Early Stopping: Ceased the training if there had 

been no increase in validation accuracy for 10 

epochs, and the best weights were restored. 

• Reduce LR On Plateau: Reduced the learning rate 

by a factor of 0.5 whenever there was no 

validation accuracy improvement for 5 epochs, 

with a minimum learning rate of 1. 

 

Figure 12 illustrates the training and validation accuracy 

and loss curves over successive epochs, demonstrating the 

convergence behavior and learning stability of the 

proposed model. 

 

 

 
 
 
 

 
 
Figure 12: Training and Validation Accuracy and Loss Over Epochs 

IV. RESULTS AND DISCUSSION 

This section presents the results obtained from training and 

evaluating the proposed EfficientNetB5-based multiclass 

Diabetic Foot Ulcer (DFU) detection model, followed by a 

comprehensive discussion of their significance. 

All results previously discussed within the methodology 

section have been reorganized here for clarity and 

professional structure. Quantitative results are supported 

by tabular performance summaries, while qualitative 

visualizations highlight model behavior and class-wise 

distinctions. The discussion integrates comparisons with 

relevant literature to contextualize the outcomes. 

A. Quantitative Results 

Table II summarizes the overall performance metrics of the 

proposed EfficientNetB5 model. The evaluation was 

conducted on a held-out test dataset comprising 10% of the 

total samples (n = 625). Key performance indicators 

include accuracy, precision, recall, and F1- score, which 

collectively reflect the model’s discriminative capability 

and robustness against class imbalance. 
 

Table II: Performance Metrics of the Proposed EfficientNetB5 Model 
S. 

No. 
Metric Value (%) 

1. Accuracy 80.35 

2. Precision 81.20 

3. Recall 78.60 

4. F1-Score 79.70 

 

The overall accuracy of 80.35% indicates a reliable model 

performance suitable for clinical-level screening tasks. 

More importantly, the macro-averaged precision and recall 

demonstrate balanced predictive power across all four  

ulcer  categories—No  Ulcer, Immediately Treatable, 

Treatable within 4 Weeks, and Complex Wounds—

ensuring the system does not overfit to any dominant class. 

The F1-score of 79.7% reflects a strong balance between 

precision (minimizing false positives) and recall 

(minimizing false negatives), which is critical for 

healthcare-related applications where both false alarms 

and missed detections carry significant consequences. 

B. Comparative Model Analysis 

To validate the superiority of the proposed model, it was 

benchmarked against widely used CNN architectures such 

as VGG19, ResNet50, and DenseNet201. Each model was 

fine-tuned under identical experimental conditions (data 

splits, learning rates, epochs, and augmentations). The 

results of this comparison are provided in Table III. 

 
Table III: Comparison of CNN Architectures for DFU Classification 

S. 

No. 
Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

 (%) 

F1-Score 

(%) 

1. VGG19 75.20 74.60 72.80 73.20 
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2. ResNet50 77.80 79.00 76.20 77.30 

3. DenseNet21 78.50 80.10 77.90 78.90 

4. 

EfficientNet 

B5 

(Proposed) 

80.35 81.20 78.60 79.70 

 

The comparison clearly shows that EfficientNetB5 

outperforms other models by a margin of 2–5% in all key 

metrics. This improvement can be attributed to its 

compound scaling strategy, which optimally balances 

image resolution, network depth, and width, enabling 

efficient feature extraction from medical images. 

Additionally, fine-tuning with selective layer unfreezing 

and the application of targeted augmentation on minority 

classes further enhanced generalization, particularly for 

complex ulcer cases that were underrepresented in the 

dataset. 

C. Visual Results and Class-Wise Analysis 

To complement the quantitative evaluation, visual analyses 

were conducted to gain deeper insight into the model’s 

class-wise behavior and decision-making patterns. These 

visualizations aid in interpreting prediction reliability, 

error distribution, and clinical relevance across different 

ulcer severity levels. 

Figure 9 depicts the confusion matrix, providing a clear 

overview of correct and incorrect classifications across all 

four categories. The diagonal elements represent correctly 

predicted samples, which dominate the matrix, signifying 

robust classification capability. However, occasional 

misclassifications between “Treatable within 4 Weeks” 

and “Immediately Treatable” categories were observed—

an expected outcome due to their close visual resemblance 

in wound texture and coloration. 

Figure 10 illustrates the class-wise F1-score distribution, 

emphasizing balanced model performance. The “Complex 

Wounds” category, which initially suffered from limited 

samples, showed a noticeable improvement after 

augmentation, reaching an F1-score above 75%, validating 

the effectiveness of our data balancing approach. 

Figure 11 showcases qualitative test predictions, 

highlighting the model’s ability to identify and 

differentiate ulcer severity visually. The predictions 

closely align with expert annotations, confirming that the 

model captures subtle clinical features such as lesion 

boundary irregularities and tissue discoloration. 

D. Discussion of Findings  

The results substantiate the hypothesis that a multiclass, 

clinically guided deep learning model can achieve high 

accuracy and meaningful interpretability for DFU 

detection. Unlike prior works that focused mainly on 

binary ulcer classification (e.g., ulcer vs. no ulcer), this 

study introduces a four-class system that reflects real-

world medical categorizations, thereby enhancing clinical 

decision-making. 

Compared to previous studies such as [3], 2024 (accuracy 

74.2%) and [2], 2021 (accuracy 82.4% but only binary 

classification), our approach demonstrates superior clinical 

granularity and balanced class performance. The 

incorporation of transfer learning and fine-tuning on 

EfficientNetB5 effectively leveraged pretrained 

knowledge from ImageNet, allowing efficient learning 

from limited medical data. Moreover, the data 

augmentation techniques— particularly brightness 

adjustments and rotation-based variations—were 

instrumental in reducing overfitting and improving the 

network’s resilience to variable real-world image 

conditions. 

From a clinical standpoint, the system’s 80%+ accuracy 

suggests that it can be effectively integrated as a screening 

support tool rather than a replacement for expert diagnosis. 

The mHealth integration (discussed in the next section) 

demonstrates how this AI model can bridge the gap 

between urban medical expertise and rural accessibility by 

enabling early detection through smartphones. 

Finally, the findings also highlight potential areas for 

further improvement. While the model performs 

consistently across most classes, additional efforts such as 

ensemble methods, transformer-based architectures, or 

attention mechanisms may further boost sensitivity for 

difficult-to-detect lesions. Future clinical validation with 

larger, more diverse patient populations will strengthen the 

generalizability of these results. 

E. Summary of the Results and Discussion 

In summary, the proposed EfficientNetB5-based 

multiclass DFU detection model demonstrates: 

 

• Robust performance across all ulcer categories 

(overall accuracy: 80.35%). 

• Effective handling of class imbalance through 

augmentation. 

• Clinically meaningful four-class categorization 

for treatment prioritization. 

• Superior performance over standard CNNs by up 

to 5% on key metrics. 

• Potential for real-world deployment within a 

mobile health (mHealth) framework. 

 

These results confirm that AI-driven wound assessment 

systems can play a crucial role in early ulcer screening and 

decision support in resource-constrained healthcare 

settings. 

V. MOBILE APPLICATION WORKFLOW 

The mobile application implements a well-defined 

workflow that begins with user registration and ends with 

ulcer detection and result monitoring. Each step of the way 

is facilitated with a user-friendly experience through 

designated pages and simple navigation. 

Figure 13 illustrates the workflow diagram of the mobile 

application, outlining the sequential processes involved 

from user input to diabetic foot ulcer classification and 

result generation.
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Figure 13: Mobile Application Workflow Diagram 

 

A. Application Features 

 

a) User Registration/Login: 

The app user can either go through the registration process 

or simply log in using his/her credentials (Figure 14). 

 

 
Figure 14: Registration Page UI 

 

b) Redirect to Main Dashboard: 

After the user has successfully logged in or registered, 

he/she will be directed to the main dashboard (home 

screen). On this screen, he/she will find a new section 

called "Start Detecting," which is intended for users who 

wish to begin the process of detecting ulcers, as well as the 

user's previous records displayed as insights. 

 

c) Dashboard Features: 

The dashboard contains a user-friendly interface with 

several main components: a button to "Detect Ulcer," 

which starts the detection process, insight cards that reveal 

the total detections, the number of positive results, and 

one's current condition, a short list of doctors with their 

names and emails, and a history preview that summarizes 

the user's detection activity over time (Figure 15). 

 

 

 
 

 

 
 

Figure 15: Bilingual Feature 
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d) Ulcer Detection Process: 

The moment the user clicks on the "Detect Ulcer" button, 

he/she is directed to another provided detection page. Here, 

he/she is able to upload an image for analysis. The AI 

model investigates the image on the lookout for an ulcer. 

In case the result indicates a positive detection of an ulcer, 

the app immediately displays the severity level (mild, 

moderate, or severe) along with suggested next steps, such 

as consulting a medical professional or following 

recommended care instructions. The user can then save the 

result to their History page for future reference, enabling 

continuous monitoring and tracking of their condition over 

time. Additionally, the app may provide visual markers on 

the uploaded image to highlight the area where the ulcer 

was detected, helping users better understand the analysis. 

Figure 16 illustrates the user interface of the detection 

page, highlighting the image upload functionality and the 

real-time display of ulcer analysis and severity prediction 

results. 

 

 

 
 

Figure 16: User Interface of the Detection Page, Showing the Image Upload Option and Real-Time Ulcer Analysis Results 

 

e) History Page: 

The History page is displayed to the user when they click 

on the insight cards or select the "History" option in the 

bottom menu. It is a full record of past ulcer detections that 

includes the date, result, and severity level so users can 

keep track of their condition over time. 

B. Model Integration 

For the smart detection features, the app's AI model runs 

on a Flask server. The process is very straightforward to 

ensure that users will receive feedback soon after they 

upload. 

 

a) Flask API Integration:  

The app communicates with a Flask backend that 

incorporates the AI model. It sends images from the app 

and receives detection results in return. 

 

b) Real-Time Feedback:  

The moment a prediction is made, the app interface 

displays the results like magic, thereby granting the user 

instant access to output 

 

 

c) Device Testing:  

The app was tested on both emulators and actual devices 

to uncover and resolve any issues with design or 

performance. 

C. Deployment 

The application went through a process of careful 

packaging, testing, and publishing in order to be ready for 

public use. 

 

• APK Generation: A signed APK was generated 

using React Native CLI, ensuring that it was 

ready for installation on Android devices. The 

build process included optimizations to reduce 

the app size and improve performance. 

• Play Store Publishing: A Google Play Developer 

account was created, and all necessary 

information, including app description, 

screenshots, and privacy policy, was provided. 

The app was then successfully published through 

the Play Console, making it accessible to users 

worldwide. 
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D. Testing and Debugging 

We conducted thorough testing under various real-world 

scenarios to confirm that the application performed well 

and delivered the expected results. 

 

• Unit & Integration Testing: Each component of 

the application was individually tested, followed 

by integration testing to ensure that all parts 

worked seamlessly together. 

• Code Optimization: Proguard rules and additional 

measures were applied to secure the code and 

make the build more efficient. 

• Real Device & Emulator Testing: The app was 

tested on multiple devices and emulators to 

identify layout, performance, and compatibility 

issues. 

• Error Logging & Monitoring: Logging 

mechanisms were implemented to monitor 

crashes and errors, allowing quick identification 

and fixing of issues. 

E. Challenges Faced 

There were several practical difficulties encountered by the 

team during the development of the mobile app, which 

required thoughtful problem solving and endless 

improvisation. 

 

a) Cross-Platform-Compatibility: 

The task of making the application appear and function the 

same in a uniform manner on various Android devices was 

not an easy one all the time. Different sizes of screens 

along with OS versions now and then created layout issues, 

thus, we had to put in more time to rectify the design and 

conduct testing. 

 

b) API Communication and Error Handling: 

The process of linking the mobile application to the 

Node.js backend along with the Flask server was not that 

smooth as we had expected. There were times during the 

testing process when the upload of images would fail or the 

detection results would be returned incorrectly. This led us 

to enhance the existing error handling and make the app 

more robust against minor network issues. 

 

c) Authentication Integration: 

Our goal was to allow users to choose between the regular 

email/password method and the simpler Google sign-in 

method. However, to allow both to operate securely side-

by-side meant that we had to meticulously handle session 

tokens and ensure that they did indeed function properly 

across various devices. 

Figure 17 illustrates the sequence diagram of the 

authentication process, detailing the interaction flow for 

both email/password and Google-based sign-in 

mechanisms. 

 

 

 

 

 

 

 

 
 

Figure 17: Sequence Diagram of Authentication 
 

d) Model Accuracy and Image Quality: 

The detection model's accuracy was largely influenced by 

the manner in which users captured the pictures of their 

feet. Lighting that was too poor, angles that were wrong, 

or unclear pictures now and then resulted in incorrect 

output. One of the solutions we came up with was to 

prompt and advise users on how to take better pictures, 

thus improving both the usability and the accuracy of the 

detection. 

 

e) Deployment and APK Signing: 

Releasing the app was the moment when the creation of a 

ready-to-use APK was faced with multiple hurdles. The 

setup of the keystore, the signing of the build, and making 

sure that everything was safe and operational required a 

thorough step-by-step process. 

F. Future Work 

Looking forward, we have quite a number of significant 

improvements we will want to consider for both the mobile 

and web platforms to make the system more powerful, 

easier to use, and scalable: 

 

 

• Offline Detection Capability: Access to the 

internet is often restricted or unreliable in a lot of 

rural and remote areas. The mobile app will come 

with a feature for offline detection as a part of the 

system to eliminate this hurdle. Therefore, 

patients will be able to conduct an ulcer screening 

on their devices without an internet connection 

being active. 

• Real-Time Telemedicine Features: The system 

will utilize telecommunications in real-time, for 

instance, chat and video consultations. This will 

enable quick and easy connection between the 

patients and the doctors. They can ask for help 

right away, describe their physical problems, and 

get tips without going out of their homes. 

• Integration with Wearable Health Devices: The 

system will include smart insoles and similar 

devices, which are one of the types of wearable 

that will be connected to it. These insoles measure 
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both the foot's temperature and pressure. They are 

always keeping track of the patient's health, and 

giving out warnings before the formation of 

ulcers. 

• Improved Accessibility and Language Support: 

Eliminating all barriers and making the system 

usable for every person is extremely crucial. 

Future releases will be equipped with extensive 

local language support for Pakistan, such as 

Punjabi, Sindhi, Pashto, and Balochi. This will 

facilitate people of diverse cultures and languages 

to operate the system with ease. 

• Expanding Disease Detection to Other 

Conditions: The system will not be restricted to 

only diabetic foot ulcers detection but will also be 

directed to identify other diseases in poor and at-

risk communities. The diseases include 

leishmaniasis, conjunctivitis, and acute 

respiratory infections. The main and primary 

focus will be in regions that are hit by floods or 

other disasters, which mostly lead to the outbreak 

of diseases. Timely detection of such diseases can 

mitigate the health risks. 

VI. CONCLUSION 

This section presents a summary of the entire Diabetic Foot 

Ulcer (DFU) detection project. It also provides a 

description of the aims, results and major outcomes. The 

project aimed at employing the techniques of image 

processing and machine learning to design a system that is 

able to detect and classify DFUs quickly and accurately. 

The system utilized both clinical images and public 

datasets to not only enhance the existing methods but also 

provide better care to the patients. In order to tackle 

challenges like poor image quality and imbalanced data, 

preprocessing steps were taken. These steps included noise 

reduction, image resizing, and data augmentation through 

adding more data. All these activities contributed to 

making the machine learning models more stable and 

trustworthy. 

One of the important accomplishments of the project was 

to shift from basic two-class detection (i.e., ulcer or no 

ulcer) to a multiclass system. This allowed the model to 

differentiate among no infection, mild, moderate, and 

severe cases. Consequently, the physicians could receive 

clearer and more comprehensive outcomes to facilitate 

their decision-making. 

State-of-the-art machine learning models were applied to 

the system making it more scalable, accessible, and 

valuable. The findings supported that with good-quality 

data and powerful algorithms DFU detection could be 

more precise and productive. 

However, the project also experienced certain limitations. 

The available data sets were not highly diverse or 

balanced. Moreover, real-time application was also 

difficult. The project, therefore, recommends, among other 

things, the collection of more data, the conduct of clinical 

trials for testing the system, and the improvement of the 

system for it to work on and be supported by mobile and 

other low-resource devices. 

VII. FUTURE WORK 

The following enhancements and developments are 

planned to make the system more robust, accessible, and 

useful for both patients and clinicians: 

 

• Enhance Model Performance through Advanced 

Techniques: 

To enhance model performance and at the same time 

understand the system's features of the ulcer even better, 

advanced deep learning methods such as ensemble 

learning and transformer models are applied. Also, real-

time performance on mobile phones would be maintained. 

The use of CNN optimizers would lead to a higher 

accuracy of detection as well. 

 

• Implement Offline Functionality: 

The focus of subsequent studies may be the enhancement 

of offline capabilities, through the use of edge technology, 

and lightweight models that are portable for mobile 

devices, consequently ensuring operability even in areas 

with no internet connection. This would completely 

remove cloud processing and allow the application to 

perform image analysis for ulcer detection. 

 

• Incorporate Additional Health Parameters: 

The app could be a greater asset to patients by diagnosing 

not only the diabetic conditions but also their related ones 

like poor circulation and skin condition. With these new 

functions, the app will be a comprehensive clinician's tool 

to assist the overall management of diabetic foot problems. 
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