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Abstract 

Lung cancer is a common and deadly cancer all over the world, and early and proper diagnosis is necessary to enhance the lives of the 

patients. The effect of traditional methods of diagnosing a patient is that they do not necessarily reflect subtle patterns in the data of 

patient, which may restrict their ability to provide efficient clinical decisions. The latest developments in Artificial Intelligence (AI) and 

Machine Learning (ML) make it possible to discover predictive relationships and conduct a broad analysis of clinical characteristics. The 

analysis of a publicly available Kaggle lung cancer dataset, which included patient characteristics (age, gender, smoking status, and 

symptoms), was conducted using ORANGE data-mining platform in the study. The chosen predictive target was survival (Survived/Not 

Survived) which was used to investigate the relationship between clinical features and patient outcomes. The Decision Tree had the best 

performance among the assessed models (CA = 0.931, AUC = 0.983, F1 = 0.928, Precision = 0.929, Recall = 0.931, MCC = 0.790). RF 

also reported good scores (CA = 0.912, AUC = 0.988, F1 = 0.903, Precision = 0.919, Recall = 0.912, MCC = 0.731), whereas kNN has 

given mediocre results. Gradient Boosting (CA = 0.781) and Naive Bayes (CA = 0.780) had much weaker scores especially on F1-score 

and MCC. All in all, the results show that AI-driven predictive modeling, particularly interpretable predictive models like Decision Trees 

and Random Forests, can help clinicians and healthcare policymakers to determine the most significant predictors to use in making a 

diagnosis, treatment plan, and even strategic healthcare management. 

  

Index Terms: Body Mass Index, Cancer Stage, Hypertension, Machine Learning, and Smoking Status. 

 

I. INTRODUCTION 

Lung cancer is one of the most prevalent and deadly 

forms of cancer that pose a major health challenge at the 

global level in morbidity and mortality. Recent statistics 

by World Health Organization (WHO) indicate that 

approximately, in the world, one-fourth of all the cancer-

causing diseases results in the fatal illness known as lung 

cancer that has very devastating impact on health care 

systems [1], and [2]. Late-stage diagnosis and the lack of 

access to the latest clinical diagnosis and treatment 

opportunities result in the fact that the prognosis of 

patients with lung cancer is frequently poor to be 

integrated into the effective screening programs [3]. 

Lifestyle, genetic, and environmental factors, including 

smoking and exposure to pollution, also influence the 

prevalence of the illness and complicate the process of 

forecasting [5], and [7]. Consequently, timely diagnosis 

and timely intervention are fundamental in improving 

patient outcomes and reducing the general burden of the 

healthcare systems. Conventionally used diagnostic 

techniques that are often based on invasive tests or a 

narrow amount of clinical data normally slow down 

treatment and do not give a dependable forecast of 

disease advancement [4]. By contrast, new trends in 

Artificial Intelligence (AI), specifically Machine 

Learning (ML) and Deep Learning (DL), provide 

promising solutions to eliminate these limitations [8], and 

[9]. CNN models VGG and ResNet have shown better 

results in the analysis of CT and histopathological data 

[10]. Likewise, most classical ML algorithms such as 

Support Vector Machines (SVM), Logistic Regression, 

Random Forest, and Naive Bayes have proven to be 

successfully used in prediction tasks in oncology [14]. 

Furthermore, the ensemble and hybrid methods have 

demonstrated great capability in risk prediction and trend 

estimation [8], and [9]. 

The availability of datasets to the general population such 

as the Kaggle Lung Cancer Dataset is an effective source 

of developing and testing predictive models based on 

demographic, lifestyle and other aspects of clinical 

characteristics [12]. Besides clinical uses, AI based 

analytics also enhance healthcare management by 

enhancing patient stratification, resource allocation and 

cost effectiveness [5], and [14]. This study employs the 

machine learning techniques on the lung cancer data on 

the Kaggle dataset to evaluate the predictive accuracy as 

well as help in clinical decision-making and strategic 

healthcare management. 

A. Study Objective 

The goal of this endeavor is to use a publicly accessible 

Kaggle dataset to create and assess AI/ML predictive 

models for lung cancer survival.  
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The work aims to: 

  

a) Support clinical practice by predicting patients' 

survival status (Survived/Not Survived) early 

and accurately based on clinical, lifestyle, and 

demographic characteristics; and  

b) Help healthcare administrators make strategic 

decisions by connecting survival predictions to 

planning, resource allocation, and cost-effective 

management of oncology services. 

B. Contribution of this Study 

The main contributions of this study are as follows: 

 

• Integration of survival prediction + strategic 

healthcare decision-making. 

• Using feature ranking (Chi-square + ReliefF). 

• Using interpretable ML models for clinical 

transparency. 

• Using a large-scale public dataset for reproducible 

benchmarking. 

• Implications for hospital planning, insurance, and 

triage. 

II. BACKGROUND STUDY 

According to authors several machine learning algorithms 

such as Naive Bayes, Support Vector Machines (SVM), 

Logistic Regression, and Artificial Neural Networks 

(ANN) have been extensively applied in detecting and 

diagnosing lung cancer [1]. Their study formed the 

foundation of the integration of AI into healthcare 

decision making by explaining the comparative benefits 

and costs of various algorithms. 

Researchers examined the frameworks of Machine 

Learning (ML) to classify the pulmonary nodules and the 

authors were concerned with how they will improve the 

accuracy of the diagnosis and reduce unnecessary clinical 

follow-ups [2]. They also noted issues with dependability 

and validation or impediments to clinical application, 

based on the UCI lung cancer data. Research analysts 

used the following classifier: SVM, K-Nearest Neighbors 

(KNN), and Convolutional Neural Networks (CNN) [3]. 

They found out that SVM was often more accurate than 

CNN and KNN, and can be applied in the early detection 

task. It was analyzed that such methods as SVM, Naive 

Bayes, Decision Trees, and Logistic Regression could be 

used to forecast lung cancer [4]. Their results explained 

the importance of the evaluation of algorithms in 

enhancing early diagnosis and survival. A study indicated 

that lung cancer is not detected at its initial stage, which 

also leads to the high mortality rate of this condition [5]. 

In order to facilitate early detection, classification, and 

evaluation of the malignancy, they emphasized the 

increasing importance of the Computer Aided Diagnostic 

(CAD) systems that are based on the machine learning, 

deep learning, and image processing techniques applied 

to the UCI data. To allow distinguishing between the 

carcinogenic and the non-carcinogenic cases, a study 

utilized classifiers such as Radial Basis Function (RBF) 

network in WEKA on the UCI data [6]. This study has 

not only proven the applicability of machine learning in 

classification, but it has also proven smoking to be a 

significant risk factor. In order to find the genetic leads 

concerning lung cancer, a research study employed the 

eco- genomics, the data on expression of the genes of the 

repositories like the Kent Ridge Biomedical Repository 

[7]. It was discovered that genetic and environmental 

elements perform better to enhance performance in 

prediction. 

Random Forest was among other ensemble based 

methods of identifying the high risk persons that was 

identifies and tested [8]. These techniques according to 

their research have the potential of creating more accurate 

and reliable lung cancer risk prediction models in order to 

interfere early. Analysts have used techniques such as 

Support Vector Regression, Backpropagation neural 

network and Long Short Memory (LSTM) to predict the 

presence of lung cancer on a large scale basis [9]. Their 

study showed how machine learning can be used in trend 

analysis and predictive epidemiology. Examiners 

developed deep learning models based on relevant CNN 

architectures such as AlexNet, LeNet, and VGG-16 that 

were applied on CT images [10]. Their results indicated 

that early diagnosis was possible since their CNN-based 

models showed the feasibility of distinguishing between 

normal and aberrant lung tissues. A research based study 

used image preprocessing, segmentation, and feature 

extraction with classifiers which include SVM, Random 

Forest and ANN [11]. The hybrid pipeline was effective 

in separating benign and prevalent tumors, which proves 

the usefulness of hybrid pipelines in machine learning 

and image processing. 

Researchers expanded the use of machine learning to 

forecast a wide range of cancer such as prostate, breast, 

and lung cancers [12]. They applied algorithms such as 

SVM, KNN, CART and random forest to classify the 

tumors into malignant, benign and high risk groups, 

indicating the diversity of machine learning in oncology. 

A study utilized text based symptom datasets using 

classic machine-learning classifiers to predict lung-cancer 

[13]. Nevertheless, the work was later withdrawn because 

of methodological inconsistencies, and even when it was 

published, the study failed to cover the survival analysis, 

and even in its initial form, it failed to cover the 

structured clinical characteristics, including comorbidities 

and forms of treatments. Examiners predicted the survival 

of lung-cancer patients that were trained on the SEER 

clinical registry using supervised machine-learning 

models, such as Gradient Boosting, Decision Trees, and 

ensemble classifiers [14]. Even though their study 

showed good predictive work, it failed to project model 

outputs to the healthcare management, operational 

planning, or resource allocation. Researchers were also 

interested in the CT-image-based diagnosis with the help 

of deep-learning architectures CNN, VGG, and ResNet 

[15]. Although they worked well in classifying an image, 

their method did not model the outcome of survival and 

did not also include demographic, lifestyle, or treatment-

related factors. Research Scientists studied supervised 

ML methods in non-medical setting (telecom churn 

forecasting) where the authors showed their prior 

experience with the interpretable models, but the study 

was not related to clinical survival modeling or medical 

decision-making [16]. Using structured meteorological 

datasets, In another study which assessed a number of 

machine-learning models for precipitation forecasting in 
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Australia, concentrating on comparative performance 

across various geographic regions [17]. The study showed 

that rainfall variability can be accurately captured using 

ML techniques; In order to facilitate smart-agriculture 

planning in Pakistan, some researchers suggested a data-

driven machine learning strategy for rainfall prediction 

[18]. The study examined soil-moisture and 

meteorological variables using supervised learning 

techniques. 

In order to forecast survival outcomes for patients with 

Non-Small Cell Lung Cancer (NSCLC) who experienced 

brain metastases, Researchers used machine-learning 

approaches. Their study demonstrated the promise of AI 

for outcome prediction in late-stage oncology by 

stratifying patients by prognosis using supervised 

machine learning models [19]. Nevertheless, the study 

was restricted to a specific clinical subgroup (NSCLC 

with brain metastases) and relied on specific clinical 

factors, which limits its applicability to larger populations 

of lung cancer patients. Furthermore, neither operational 

planning nor healthcare management viewpoints were 

included in the study. 

To predict lung cancer survival, researchers suggested a 

hybrid approach that combines statistical survival models 

and machine learning classifiers [20]. Their research 

demonstrates the value of combining Machine Learning 

(ML) with conventional statistical techniques like Cox-

based survival modeling. Nevertheless, interpretability, 

feature-ranking, and integration with clinical decision-

making workflows were not investigated, and the 

investigation was carried out on a small dataset. 

Additionally, the analysis did not apply its predictions to 

administrative or strategic aspects of healthcare systems. 

A thorough assessment of machine learning and deep 

learning models for lung cancer level/stage classification 

was carried out by researchers [21]. Models with 

competitive accuracy on structured feature sets included 

Random Forest, SVM, CNNs, and hybrid techniques. 

However, the study did not look at how model outputs 

could help with resource allocation, patient prioritizing, 

or medium-term healthcare planning; instead, it 

concentrated on stage categorization rather than survival 

prediction. Furthermore, there was no examination of 

operational deployment or ethical issues in the paper. 

 The current research, in contrast, fills several of the gaps 

present in these papers; (i) by operating on structured 

clinical and lifestyle characteristics, rather than only 

imaging or text data, (ii) by specifically targeting survival 

prediction over detection alone, (iii) by relying on 

interpretable ML models, which could be used in clinical 

transparency, and (iv) by connecting survival predictions 

to medium-term hospital planning and strategic 

healthcare decision-making, an area that has not been 

adequately explored in prior studies of lung-cancer 

prediction. The literature review reveals that the machine 

learning and deep learning models were already popular 

in predicting, detecting, and analyzing lung cancer 

survival. Although such traditional classifiers like SVM, 

Naive Bayes and Logistic Regression have consistently 

performed on both clinical and symptom based data, the 

most recent development on CNNs, ensemble and hybrid 

pipelines has shown to be successful at high rates on 

image classification, risk and trend prediction. Despite 

such a massive improvement, difficulties such as data 

reliability, validation, and clinical integration still exist. 

The combination of these works forms a solid base of AI 

solutions in the field of lung cancer diagnostics and 

prognosis contributing to the fact that more powerful and 

clinically valid predictive algorithms are built.  

The Table I shows the Comparative Overview of Recent 

Lung Cancer AI Studies. 

 
Table I: Comparative Overview of Recent Lung Cancer AI Studies 

S. 

No. 
Study Dataset Methods Objective Limitation / Gap 

1. Raoof et al. [1] UCI NB, SVM, ANN 
Lung cancer prediction using 
classical ML 

No survival prediction; no 

healthcare management 

integration 

2. Abdullah et al. [3] UCI SVM, KNN, CNN 
Classification based on 
correlation-selected features 

Small dataset; focus only on 
early detection 

3. Lynch et al. [14] SEER 
Gradient Boosting, Decision 

Trees, Ensembles 

Survival prediction using 

clinical attributes 

No link to strategic healthcare 

operations or resource planning 

4. Mamatha et al. [15] 
CT Image 

Dataset 
CNN, VGG, ResNet Imaging-based tumor diagnosis 

No clinical-feature–based 
survival modeling; image-only 

approach 

5. This Study Kaggle DT, RF, KNN, NB, GB 
Survival prediction + strategic 

healthcare decision-making 

Adds feature ranking + 
managerial implications; still 

needs clinical validation 

 

III. METHODOLOGY 

This paper adheres to the workflow depicted in Figure 1, 

with the primary stages being the data preparation, data 

analysis, and evaluation of the model. 

A. Data Source 

The data used within the research was the one at the 

Kaggle repository, which contains information about the 

patients with lung cancer publicly. It includes the 

attributes such as age, gender, smoking behavior and 

symptoms, which the attributes can be used as predictive 

attributes. The reason behind this was that the selection of 

the attributes was done based on their clinical 

significance in understanding the course of illness. It has 

17 columns and 199,999 rows of patient characteristics, 

diagnoses and information about their treatment. It has 

three numerical features and ten categorical features 

(three of them are numerical and the rest are categorical 

features), two date features and two metadata features. 
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The target measure of the study is survival (Survived /Not 

Survived). It is important to note that there are no values 

that are not present in the data. The most meaningful 

features were mentioned in the stage of preprocessing so 

that they could be incorporated in the modeling step. The 

data was further divided into two (training and testing) to 

quantify the effectiveness of models applied in the 

research; the models applied are Naive Bayes, Random 

Forest, K-Nearest Neighbors (KNN), Gradient Boosting, 

and Decision Tree. Performance was evaluated using 

evaluation metrics such as accuracy, precision and recall. 

It was repeated in preprocessing, feature selection and 

model training to enhance the predictive power and 

reliability. 

The Kaggle lung cancer dataset's size, accessibility, and 

organized representation of important clinical and 

demographic factors are what drive its utilization. In 

order to enable repeatability and comparison across 

various modeling methodologies, public benchmark 

datasets are frequently employed in the early phases of AI 

research in healthcare. Prior to clinical implementation, a 

number of earlier studies on cancer prediction and 

survival analysis also relied on public archives. We treat 

this study as a methodological and benchmarking 

contribution rather than a finalized clinical tool in 

accordance with this practice. 

 
 

 
 

Figure 1: Workflow of the Study 
 

B. Data Preprocessing and Preparation 

The dataset was preprocessed to be of quality, consistent 

and suitable to be analyzed using machine learning 

methods. As the Kaggle data did not have any missing 

data, the data imputation was not necessary. The 

attributes analyzed in the statistical design to detect 

significant trends were the main features of age, smoking 

status, and gender. This was followed by the feature 

importance analysis which was conducted to give the 

most relevant predictors a priority hence enhancing 

efficiency of the model and eliminating noise. The target 

variable was a categorical variable which denoted 

survival (Survived/Not Survived). Lastly, the categorical 

variables like the smoking status, type of treatment and 

comorbidities were coded as numerical values to allow 

the application of machine learning algorithms. The 

Figure 2 shows the Data analysis using orange flow and 

Table II summarizes the characteristics of the Lung 

Cancer dataset used in this study, including its size, 

feature composition, target variable, Meta attributes, and 

the absence of missing data as defined in the Orange 

workspace. 

We used stratified sampling to divide the dataset into 

training and testing sets in order to minimize bias caused 

by imbalance. We assessed the models using precision-

recall behavior, Matthews Correlation Coefficient 

(MCC), accuracy, and AUC. 
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Figure 2: Dataset Analysis using Orange Flow 
 

Table II: Orange Workspace Description 

S. 

No. 
Property Description 

1.  Dataset Name Lung Cancer 

2.  Size 199,999 Rows, 17 Columns 

3.  Features 10 Categorical, 4 Numeric 

4.  Target Variable 
Categorical Outcome with 2 

Classes 

5.  Meta 2 Text Attributes 

6.  Missing Data None 

C. Class Imbalance Handling 

The dataset contains an uneven distribution between the 

Survived and Not Survived classes. Although ORANGE 

does not support SMOTE or advanced resampling 

techniques directly, the “Balance Data” widget was used 

to adjust class weights and reduce skew during model 

training. Additionally, stratified training/testing splits 

were applied to preserve class proportions. This ensures a 

more reliable evaluation, especially when combined with 

imbalance-robust metrics such as MCC and Precision–

Recall analysis. 

D. Data Features Statistics 

The data set includes information on patients having lung 

cancer in detail covering their treatment route and their 

lifestyle and medical history.  

Age defines the age of the patient and ID is a unique 

identifier. Nation of origin of every patient is specified in 

Country and the date of diagnosis and the date of the end 

of their treatment are captured in the Timeline, and the 

most vital lifestyle and clinical characteristics are 

Smoking Status, which defines the smoking history of the 

patient and Cancer Stage, which identifies the stage of 

cancer progression. There are also other health variables 

like the level of cholesterol in the body and the Body 

Mass Index (BMI). Comorbidities are in the form of 

binary indicators like cirrhosis, asthma, hypertension, and 

other cancers. Lastly, Treatment Type: This identifies the 

medical procedures one undergoes, i.e. chemotherapy, 

surgery or radiation. The Survived (Survived/Not 

Survived) is a categorical feature that is to be used to 

define the target variable in the proposed study. Taken 

together, these characteristics give a global perspective on 

patient demographics, clinical conditions, and treatment 

information, thus the dataset is appropriate to test 

machine learning models.  

The overall feature statistics are shown in figures, i.e., 

Figure 3 to 5. 

 

 

 

 

 
Figure 3: Feature Statistics 1 
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Figure 4: Feature Statistics 2 

 

 
Figure 5: Feature Statistics 3 

 

In Figure 6, a ranking analysis of the lung cancer data has 

been provided with two scoring processes, namely 

ReliefF and Chi-square (2). The predictive value of each 

of the characteristics in the development of lung cancer is 

established. The information encompasses country, 

condition of survival, body mass, age, form of therapy, 

asthma, cancer stage, cholesterol, cirrhosis, hypertension, 

additional cancer, smoking condition and family history.  

 

The more the higher the score the better are the 

correlations of each feature with the target variable, 

depending on the chi-square. Conversely, ReliefF values 

estimate the discriminative power of the features; that is, 

the higher the value the more the focus on the features 

that give the greatest classification to the classes. This 

ranking finds the most important indicators of the 

creation of correct and sound machine learning models.  

 

 
 

Figure 6: Rank Statistics of Features 
 

Significantly, the ReliefF value and Chi-square values of 

such characteristics as survived and type of treatment use 

are positive and relatively high, which indicates their 

relevance to the outcomes predictions related to lung 

cancer. On the other hand, low ReliefF scores of traits 

may not be so important and even less probable to reduce 

the predictive power of the model. This ranking is 

necessary in order to ascertain the most influential 
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predictors to machine learning modeling in lung cancer 

studies. When it comes to a manual selection process the 

top five features are prioritized. The dataset also gives the 

gender distribution of the patients as shown by the bar 

chart. There are approximately 100,000 entries in each 

group, approximately an equal amount of male and 

female patients. The dataset is protected from gender bias 

because of its equal representation, which enables a fair 

assessment of predictive models for patients of both 

genders shown in Figure 7 and the overall data 

represented in Figure 8. 

 

 
Figure 7: Distribution on Gender Target Feature 

 

 
Figure 8: Data Table 

 

The study's dataset includes survival outcomes as well as 

clinical, lifestyle, and treatment-related data about 

individuals with lung cancer. Its characteristics include 

body mass index (BMI), cholesterol, smoking status 

(never smoked, passive smoker, former smoker, or 

current smoker), and cancer stage (Stage I–IV). There is 

also evidence of concomitant conditions such as cirrhosis, 

asthma, hypertension, and various cancers. The details of 

the treatment, such as chemotherapy, radiation, surgery, 

or a combination of these, are also covered. The goal 

variable is a binary representation of the patient's survival 

status. This dataset provides a thorough foundation for 

lung cancer survival prediction modeling and aids in 

healthcare decision-making by combining lifestyle and 

medical aspects. 

E. Model Development 

The number of machine learning methods for predicting 

patient survival was compared using the ORANGE data 

mining platform. It is worth mentioning that the use of 

somewhat classical machine learning models in this 
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experiment was not fortuitous. The predictive power of a 

model in its raw form is as important as its transparency 

and interpretability in a number of clinical applications. 

Random Forests and Decision Trees can be read by 

humans and have importance profiles, which can be 

discussed directly with clinicians and administrators and 

other machine learning models too utilized in study. 

Although more complex deep learning models might be 

more accurate in theory, they would be a black-box, and 

thus not be accepted in healthcare decision-making due to 

the traceability. Therefore, what we focus in this work is 

the set of interpretable models which may be adopted in 

practice in a real way. 

 

The models listed below are assessed: 
 

a) Decision Tree (DT):  

This model makes step by step root-to-leaf decisions 

using a sequence of yes and no questions on patient 

characteristics that are like a tree to identify survival. 

 

b) Random Forest (RF):  

Random Forest develops a number of Decision Trees 

depending on the subsets of the data, and averages the 

results through majority voting. It is an ensemble 

approach that reduces overfitting, increases the 

generalization and produces a more accurate and more 

reliable forecast of patient survival.  

 

c) Naïve Bayes (NB):  

Naive Bayes is a predictive method of survival based on 

probability theory and under the condition that the 

features of patients are conditionally independent. It is 

straightforward but effective at medical classification 

since it can determine the probability of survival by 

adding the respective probabilities of every feature. 

 

d) K Nearest Neighbors (KNN):  

The K-Nearest Neighbors (KNN) model predicts a 

patient's survival based on the outcomes of the closest, 

most similar patients in the data. When making a choice, 

it considers "neighbors" who share comparable 

characteristics. 

 

e) Gradient Boosting(GB):  

Gradient Boosting is an ensemble based learning 

algorithm where the prediction models are constructed in 

a chain fashion with each new tree making corrections to 

the older ones. It integrates several weak learners, usually 

shallow Decision Trees, into a strong predictive model 

through loss optimization via gradient descent. Gradient 

Boosting is a good approach to predicting survival in 

patients because it can effectively represent the complex 

non-linear relationships between patient characteristics 

and patient survival outcomes with high precision and 

resistance to overfitting as long as tuned appropriately. 

F. Hyperparameter Tuning and Model Settings 

All the models have been set and optimized through the 

parameter-setting and optimization capabilities of the 

ORANGE data mining platform. In the case of the 

Decision Tree classifier, we altered the maximum depth 

of the tree and the minimum sample size in each tree leaf 

to prevent overfitting and still achieve interpretability. 

Random Forest model has been optimized by changing 

the amount of trees per random forest (between 50 and 

200), the maximum depth, and the bootstrap sampling. In 

the case of K-Nearest Neighbors (KNN) we tried various 

values of. K (3-15) and distance measures. Naive Bayes 

made use of its default smoothing parameters as is typical 

in medical classification tasks. The learning rate, the 

number of boosting stages and the tree depth were 

adjusted to tune Gradient Boosting. In general, we 

preferred parameter settings that offered an acceptable 

predictive accuracy and the complexity of the model, 

which is required in clinical settings related to transparent 

and explainable models. 

IV. RESULTS OF MACHINE LEARNING MODELS 

These models were chosen due to their ability to handle a 

range of data types and their proven track record of 

effectiveness in classifying tasks. As shown in Figure 9, 

the Orange dashboard sample summarizes the 

performance of the evaluated models. 

The Figure 9 shows the arrangement of orange widgets 

and how the results of the machine learning models are 

displayed. Such as k-Nearest Neighbors (KNN), Decision 

Tree (DT), Random Forest (RF), Gradient Boosting (GB), 

and Naive Bayes (NB), were compared based on six 

commonly used evaluation metrics, such as Area under 

the Curve (AUC), Classification Accuracy (CA), F1-

Score, Precision, Recall, and Matthews Correlation 

Coefficient (MC). The result is presented in Table III. 

The assessment was on precision, discriminative power, 

and predictive balance. The decision tree performed well 

on all measures, and the precision, recall, accuracy (CA), 

AUC, F1-score, and MCC values were 0.929, 0.931, 

0.931, 0.983, 0.928, and 0.790, respectively, which is 

why it is the best-performing model in general. This 

trade-off between high precision and recall proves this to 

be effective in prediction as well as discrimination. The 

performance of the Random Forest was also very 

impressive, as the accuracy was 0.912, the accuracy was 

0.988, the F1-score was 0.903, the precision was 0.919, 

the recall was 0.912, and the MCC was 0.731. Random 

Forest produced an outstanding discriminatory power, but 

its MCC was worse than the Decision Tree (0.790), which 

corrected the previous inconsistency. Nonetheless, RF has 

been a stable and resilient classifier that has always gotten 

good results. By contrast, weaker results were obtained 

with kNN, with an accuracy of 0.798, an AUC of 0.788, 

an F1-score of 0.757, a precision of 0.771, a recall of 

0.798, and an MCC of 0.275. Naive Bayes did not 

perform well, with an accuracy of 0.780, an AUC of 

0.507, an F1-score of 0.684, a precision of 0.609, a recall 

of 0.780, and an MCC of 0.000, which indicates that it 

has no significant predictive capability. Equally, Gradient 

Boosting reported low predictive validity, with an 

accuracy of 0.781, an AUC of 0.535, an F1-score of 

0.684, a precision of 0.829, a recall of 0.781, and an MCC 

of 0.009. 
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Figure 9: Orange Dashboard Machine Learning 

Table III: Performance Comparison of Machine Learning Models(Model Used for Results) 
S. 

NO. 
Model AUC Accuracy (CA) F1-Score Precision Recall MCC 

1.  Decision Tree 0.983 0.931 0.928 0.929 0.931 0.790 

2.  Naïve Bayes 0.507 0.780 0.684 0.609 0.780 0.000 

3.  Gradient Boosting 0.535 0.781 0.684 0.829 0.781 0.009 

4.  k-Nearest Neighbors 0.788 0.798 0.757 0.771 0.798 0.275 

5.  Random Forest 0.988 0.912 0.903 0.919 0.912 0.731 

 

The key findings in Figure 9 show that the DT model 

outperformed all the others without a doubt, boasting the 

greatest accuracy of 0.931 and a well-balanced precision 

of 0.929 and recall of 0.931. This indicates that it can 

accurately forecast the outcomes of this categorization job 

far better than kNN or Random Forest. The Random 

Forest algorithm also performed well, achieving a high 

accuracy of 0.912 and fair metrics, but its results were 

slightly worse than those of the Decision Tree. With a 

low precision of 0.609, Naive Bayes, on the other hand, 

showed the least predictive potential, suggesting that it is 

not an appropriate algorithm. For this dataset, the 

Decision Tree is the most dependable classifier for 

forecasting survival outcomes since it has great accuracy 

and a well-balanced precision and recall performance, as 

shown by the results. 

A. Confusion Matrix for K Nearest Neighbor 

The confusion matrix of the k-Nearest Neighbor (kNN) 

model in Figure 10 illustrates the level of the model in the 

binary survival categorization test in terms of survival 

versus non-survival. According to the definitions of True 

Negatives and True Positives in the matrix, the model 

was correct in classifying 150,466 and 9,229 cases as not 

surviving and surviving, respectively. Nevertheless, the 

model did not succeed in its classifications. It has 

forecasted 34,673 real not survived cases as survived 

(False Positives) and 5,631 real survived cases as not 

survived (False Negatives). The overall amount of correct 

predictions (159,695) and false guesses (40,304) gives a 

definite upper hand to a correct classification. At a two 

way classification, the overall accuracy is approximately 

79.8 percent. The survival rate is well predicted by this 

model with many successful predictions compared to 

failure predictions. 
 

 
Figure 10: KNN Classifier Confusion Matrix of Lung Cancer Survival 
Prediction Indicating the Proportion of the Survived and Not Survived 

Classes that are True Positives, True Negatives, False Positives, and 

False Negatives 
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B. Confusion Matrix for Random Forest 

According to Figure 11, the accuracy of the classification 

algorithm using the Random Forest is the percentage of 

cases that the classification algorithm correctly classified 

out of 155,716 cases, according to which 26,603 were 

correctly assigned to the having survived category (True 

Positives), and 26,603 were correctly assigned to the 

having not survived category (True Negatives). 

Nevertheless, misidentifications still influence the 

effectiveness of the model, with 381 successful survived 

cases of the model being predicted to not survive (False 

Negatives). Moreover, 17,299 real non survival cases 

were forecasted to be the survival (False Positives). The 

number of correct predictions was 182,319, and this is 

much more than the number of incorrect predictions 

(17,680). The Random Forest model in this case is strong 

and significant in terms of predictive power on survival 

outcomes, as indicated by the confusion matrix where the 

overall prediction of a binary categorization scenario is 

approximately 91.2%. 
 

 
Figure 11: Random Forest Classifier Confusion Matrix of Lung Cancer 

Survival Prediction Indicating the Proportion of the Survived and Not 
Survived Classes that are True Positives, True Negatives, False 

Positives, and False Negatives 

C. Confusion Matrix for Decision Tree 

Figure 12 depicts the confusion matrix of the Decision 

Tree classifier that the researcher employed to determine 

the performance of the model in the prediction of survival 

in lung cancer.  
 

 
Figure 12: Decision Tree Classifier Confusion Matrix of Lung Cancer 
Survival Prediction Indicating the Proportion of the Survived and Not 

Survived Classes that are True Positives, True Negatives, False 

Positives, and False Negatives 
 

The model appropriately categorized 152,614 non-

survivors (true negatives) and 33,490 survivors (true 

positives). There were relatively few misclassifications, 

3,483 non-survivors were wrongly predicted as survivors 

(false positives) and 10,412 survivors were wrongly 

predicted as non-survivors (false negatives). On the 

whole, the matrix indicates that the Decision Tree model 

would have an excellent balance of both correct survivor 

and non-survivor prediction with the proportion of errors 

being relatively low. 

V. MODEL TRAINING AND EVALUATION 

CRITERIA 

Each algorithm was trained using the preprocessed 

dataset, and performance was evaluated based on such 

measures as specificity, precision, recall, and F1-score. 

The classification exercise was primarily aimed at 

predicting two possible results. 

 

1. Survived 

2. Not Survived 

 

To reduce bias and guarantee the reliability of the results, 

cross-validation techniques were used. The models' 

comparison analysis revealed which algorithm was most 

effective at predicting survival. This section describes the 

metrics also known as key performance indicators, or 

KPIs that will be used to assess the algorithm's output. 

A. Accuracy 

Number reflecting how well the predicted model 

performed. The accuracy formula shown in Eq. (1): 

 

                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                       (1) 

 

TP refers to where the model produces a positive class 

and the model correctly classifies the result as a positive. 

We call FP a False Positive outcome in a scenario 

whereby the model erroneously marks the positive class 

as a negative one. The outcome that the model predicted 

the negative class to be is what is referred to as the true 

negative, or TN. In the context of detection, a false 

negative, or FN is the name associated with negative 

response in a situation where a model thinks that the other 

category is wrong. 

B. Precision 

Precision is the proportion of cases that are accurately 

classified as positive. Specifically, if a model predicts 

positive numbers then the formula is shown in Eq. (2): 
 

                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (2) 

C. Recall 

Recall is defined as the proportion of successfully 

recognized positives to all positives. This formula is the 

same as the sensitivity formula as shown by Eq. (3):  

                                𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                             (3) 

D. F1 Score 

One metric for assessing a classification model's 

performance is the F1 score. It is a single metric that 

balances precision and recall by taking the harmonic 

mean of the two. It is shown by the Eq. (4). 
 

            𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2𝑥
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                       (4) 
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The question of which algorithm is better may arise when 

precision and recall alone are not enough to assess 

performance, for as when one mining technique has 

higher accuracy but lower recall than another. This issue 

can be resolved by using the F1 score metric, which 

provides the mean of recall and precision. The F1 score is 

an industry standard for assessing a classification model's 

performance. The computation is displayed in Eq. (4). By 

combining recall and precision into a single score, it 

offers a fair assessment of a model's accuracy. 

E. Matthews Correlation Coefficient (MCC) 

Matthews Correlation Coefficient MCC is an equal-tailed 

estimate statistic that takes into account the four 

responses of a binary classification problem: true 

positives (TP) and true negatives (TN), false positives 

(FP) and false negatives (FN). In contrast to accuracy 

which can be misleading when applied on unbalanced 

datasets, MCC offers a more accurate estimation of the 

overall quality of the classifier. It is a value of -1 to +1. 

Overall mathematically shown in Eq. (5). 

 

      𝑀𝐶𝐶 =
(𝑇𝑃×𝑇𝑁)−(𝐹𝑃×𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                   (5) 

 

The use of MCC is particularly important in this study 

because it provides a more reliable summary of model 

performance under class imbalance compared with 

accuracy alone. 

F. Class Distribution Challenges and Mitigation 

Strategies 

In this study, the dataset is imbalanced, with 

approximately 80% of patients in the Not Survived class 

and 20% in the Survived class. Such skewed class 

proportions can bias machine learning models toward the 

majority class. Such prejudiced allocations can bias the 

machine learning models so that they represent the 

majority, and consequently, they achieve a falsely high 

accuracy but not the outcomes as in the minority class. 

Such skew is particularly significant in medical 

prediction, where the error of false negativity (indicating 

that the patient survives when he or she does not) can be 

life-threatening to the clinical process. To address this 

weakness, in future studies, we ought to take into account 

the application of resampling techniques, such as 

Synthetic Minority Oversampling Technique (SMOTE), 

stratified cross-validation, or cost-sensitive learning, such 

that both classes are better represented. In addition, 

alternative metrics that are not pegged on the accuracy 

including MCC, F1-score and Precision-Recall AUC are 

to be targeted since they are more balanced and 

dependable assessments of the performance of classifiers 

on unbalanced medical data. 

Although class imbalance is still a problem, skew was 

largely compensated for by automatically modifying class 

weights during training using ORANGE's built-in 

"Balance Data" widget. However, ORANGE does not 

support more sophisticated imbalance-handling 

techniques like SMOTE, cost-sensitive learning, or 

ensemble-based resampling. In order to further enhance 

minority-class recall and model fairness, these methods 

will be implemented in future versions of this work using 

a Python-based pipeline. 

VI. INTERPRETATION OF TARGET FEATURE 

The models were built to classify the patients based on 

whether they survived or not based on their demographics 

and clinical features. The target variable is survivorship, 

which can be of two categories: 0 (survived) and 1 (not 

survived). The image highlights 156,097 examples in an 

unbalanced sample, the bigger percentage of which were 

patients who did not manage to survive the outcomes of 

the lung cancer. The total number of the group that did 

not survive is 43,902, and there was the number of the 

group that did survive. Both groups comprise both male 

and female patients, as observed in Figure 13; however, 

the size of the classes is very different: the classes consist 

of the not survived group with almost 80% and the 

survived group with 20%. Such categorization division is 

justified by the chi-squared test (χ² =2.94, p = 0.086) that 

shows that survival status and gender are not statistically 

significantly associated. The rankings of the statistical 

features indicate that gender is not a major predictor of 

survival, whereas other aspects of the treatment, the level 

of cholesterol, smoking behavior, and type have more 

discriminatory features. Decision trees and random 

forests, among other machine learning models, yielded 

high AUC and accuracy in categorizing survival, 

implying that survival is important and the objective 

variable to be discriminated in the lung cancer data 

collection. Even though gender does not provide useful 

information to inform the discriminative variable in such 

an environment, the integration of clinical predictors and 

outcome characteristics allows the development of a 

successful predictive model to determine survival, shown 

in Figure 14. The boxplot shows how the gender groups 

are distributed in terms of survival. The graphical 

comparison reveals that there is no great asymmetry in 

the number of survivors and non-survivors of both sexes, 

and the trend is alike in both genders. 

The clinical implications of prediction errors are that the 

level of risk associated with the various predictive errors 

is different. The most dangerous are false negatives, or 

the situation in the model where the patient can be 

predicted to survive but, in fact, the patient dies. Such 

errors can result in the clinicians giving less intensive 

monitoring, taking too long to escalate treatment, or even 

missing early palliative interventions. False positives, 

conversely - predicting a patient will die when the patient 

does not in fact die, might cause excessive resource 

allocation, but they are usually not as damaging as the 

missed risk-patients. The confusion matrices of each 

model thus serve as a good understanding of how the 

model would perform in the real clinical triage or risk-

stratification environment. Practically, healthcare teams 

can change the decision thresholds to be more sensitive to 

the non-survived group so that high-risk patients can be 

detected even at the cost of a higher number of false 

positives. This is a threshold change that is typical of the 

clinical setting where reducing the number of missed 

critical cases is the priority. 
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Figure 13: Survived or Not Survived Result 

 

 
Figure 14: Boxplot Result Analysis on Outcome 

 

VII. NOVELTY OF WORK 

The originality of this study is that it targets survival as a 

predictive feature and simultaneously, integrates clinical 

outcome predictive modeling and strategic health care 

decision making based on the strength of Artificial 

Intelligence (AI) and Machine Learning (ML). Unlike the 

previous studies, which typically concentrate on the 

clinical, or algorithmic performance, this study cuts 

across the medical and management domains, and this is 

advantageous to both the patients and the health 

institutions leading to the provision of a comprehensive 

paradigm. It is based on a large scale Kaggle dataset of 

around 200,000 records of patients and covers a broad 

spectrum of demographic, lifestyle, and clinical 

characteristics, such as smoking status, BMI, 

comorbidities, treatment type, and gender. Further, 

despite the fact that the analysis of the various ML 

algorithms, including KNN, Decision Tree, Random 

Forest, Naive Bayes, and Gradient Boosting, is performed 

using the ORANGE data mining system, feature ranking 

using the assistance of Chi-square and ReliefF assists in 

exposing the most noteworthy factors that influence the 

survival outcomes. This two-pronged clinical 

administrative strategy makes sure that the research not 

only replaces an instrument of diagnosis with AI, but also 

makes it a strategic facilitator of healthcare systems. Such 

predictions can inform policy makers, hospitals and 

health insurance companies to reduce costs of treatment, 

distribute resources well and provide much equal and 

gender neutral healthcare. 

In addition to technical performance, this research paper 

makes a direct linkage of the outputs of survival 

prediction to strategic decisions in healthcare. The 

proposed models will be able to inform medium-term 

planning in oncology departments regarding staffing, 

usage of chemotherapy chairs, scheduling of 

radiotherapy, and the allocation of ICU or high-

dependency beds by identifying high-risk and lower-risk 

groups of survival. 

VIII. MEDIUM-TERM IMPLICATIONS FOR 

HEALTHCARE MANAGEMENT 

The most effective models can provide the survival 

probability as risk strata (scale: high, medium, and low 

probability of survival). Such strata may be actionable 

hospital planning and hospital management inputs. As an 

illustration, patients that were characterized as high-risk 

non-survivors could be given priority to more follow-up 

visits, multidisciplinary tumor boards, and early palliative 

care consultations. Aggregate forecasts within a group of 

patients at the operational level can be useful in 

supporting oncology units to forecast the demand of 

chemotherapy rooms, radiotherapy rooms and critical 

care rooms within a specific planning horizon. Moreover, 

such risk profiles can be utilized by insurers and policy 

makers to develop targeted intervention programs to 

patients with certain comorbidities and clinical 

weaknesses. This shows the usefulness of AI-based 

survival prediction as a clinical diagnosis tool but also as 

a health management and decision-making tool. 
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IX. CONCLUSION 

This paper has shown that Artificial Intelligence (AI) and 

Machine Learning (ML) solutions could be successfully 

used to predict the outcomes of survival in lung cancer by 

considering patient demographics, medical history, and 

clinical characteristics. Several algorithms, such as 

Random Forest, Gradient Boosting, Decision tree, K-

Nearest Neighbors (KNN) and Naive Bayes were made 

and evaluated on the basis of the ORANGE data mining 

platform. The Decision Tree was the most predictive to 

use among these. The ease with which Decision Tree 

models can be interpreted, and so can the Logistic 

Regression in the larger research, makes them 

exceptionally useful in clinical practice where 

transparency is of paramount importance. The results 

underline how AI-driven predictive models can be used to 

improve clinical decision making by assisting with early 

detection, risk assessment, and survival prediction in 

patients with lung cancer. In addition to clinical tasks, the 

incorporation of such predictive models into user-friendly 

software, such as ORANGE, has administrative value in 

the healthcare industry, such as enhancement of resource 

distribution, decrease in costs, and enhanced patient 

management approaches. Moreover, the paper underlines 

the promising potential of using a combination of clinical 

data, feature ranking algorithms (i.e. Chi-square and 

ReliefF), and machine learning algorithms to enhance 

survival prediction and facilitate evidence-based 

healthcare decision making. Further studies are needed to 

improve the accuracy and generalizability of the 

prediction by using larger and more heterogeneous 

datasets, genetic and imaging data, and overcome the 

issue of class imbalance by resampling and cost-sensitive 

learning. Besides that, the investigation of more complex 

deep learning designs including Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks might also lead to the further 

improvement of predictive capability and clinical 

usability. 

Moreover, we intend to work with nearby hospitals to 

validate the suggested models using actual registry and 

Electronic Health Record (EHR) data. In order to evaluate 

the survival forecasts' practical utility, calibration, and 

robustness in real-world healthcare settings, such clinical 

validation will be crucial. 

X. LIMITATIONS 

There are a number of limitations to this study. First, 

rather than coming directly from hospital Electronic 

Health Record (EHR) systems, the lung cancer dataset 

used in this work was obtained via a public Kaggle 

repository. As a result, there is no guarantee that the 

models can be applied to actual hospital populations, and 

the authenticity and clinical realism of the data may differ 

from actual patient registries. Second, imaging, genomic, 

and longitudinal follow-up data that could improve 

survival prediction are not included in the dataset. Third, 

the analyses have not yet been externally confirmed on 

other clinical cohorts and are based on a single dataset. 

These constraints suggest that rather than being instantly 

deployable models, the provided findings should be taken 

as an initial benchmark. 

XI. ETHICAL CONSIDERATIONS IN AI-DRIVEN 

HEALTHCARE 

Survival prediction with the help of AI and ML in lung 

cancer is an issue with critical ethical considerations. The 

information about patients should be managed according 

to the data protection laws and policies developed by 

institutional review boards. In the case of anonymized or 

public datasets, models that are trained on this type of 

data may incorporate demographic, access to care, or 

comorbidity biases. Regular auditing of model 

performance in subgroups and explainable approaches to 

enable clinicians to gain an insight into the decision to 

make a particular prediction are thus necessary. The use 

of the suggested models into practice in any real 

healthcare environment should be supported with proper 

governance, human regulation, and open communication 

with patients and other stakeholders. 
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