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Abstract

Lung cancer is a common and deadly cancer all over the world, and early and proper diagnosis is necessary to enhance the lives of the
patients. The effect of traditional methods of diagnosing a patient is that they do not necessarily reflect subtle patterns in the data of
patient, which may restrict their ability to provide efficient clinical decisions. The latest developments in Artificial Intelligence (Al) and
Machine Learning (ML) make it possible to discover predictive relationships and conduct a broad analysis of clinical characteristics. The
analysis of a publicly available Kaggle lung cancer dataset, which included patient characteristics (age, gender, smoking status, and
symptoms), was conducted using ORANGE data-mining platform in the study. The chosen predictive target was survival (Survived/Not
Survived) which was used to investigate the relationship between clinical features and patient outcomes. The Decision Tree had the best
performance among the assessed models (CA = 0.931, AUC = 0.983, F1 = 0.928, Precision = 0.929, Recall = 0.931, MCC = 0.790). RF
also reported good scores (CA = 0.912, AUC = 0.988, F1 = 0.903, Precision = 0.919, Recall = 0.912, MCC = 0.731), whereas kNN has
given mediocre results. Gradient Boosting (CA = 0.781) and Naive Bayes (CA = 0.780) had much weaker scores especially on F1-score
and MCC. All in all, the results show that Al-driven predictive modeling, particularly interpretable predictive models like Decision Trees
and Random Forests, can help clinicians and healthcare policymakers to determine the most significant predictors to use in making a
diagnosis, treatment plan, and even strategic healthcare management.

Index Terms: Body Mass Index, Cancer Stage, Hypertension, Machine Learning, and Smoking Status.

I. INTRODUCTION

Lung cancer is one of the most prevalent and deadly
forms of cancer that pose a major health challenge at the
global level in morbidity and mortality. Recent statistics
by World Health Organization (WHO) indicate that
approximately, in the world, one-fourth of all the cancer-
causing diseases results in the fatal illness known as lung
cancer that has very devastating impact on health care
systems [1], and [2]. Late-stage diagnosis and the lack of
access to the latest clinical diagnosis and treatment
opportunities result in the fact that the prognosis of
patients with lung cancer is frequently poor to be
integrated into the effective screening programs [3].
Lifestyle, genetic, and environmental factors, including
smoking and exposure to pollution, also influence the
prevalence of the illness and complicate the process of
forecasting [5], and [7]. Consequently, timely diagnosis
and timely intervention are fundamental in improving
patient outcomes and reducing the general burden of the
healthcare systems. Conventionally used diagnostic
techniques that are often based on invasive tests or a
narrow amount of clinical data normally slow down
treatment and do not give a dependable forecast of
disease advancement [4]. By contrast, new trends in
Artificial  Intelligence  (Al), specifically Machine
Learning (ML) and Deep Learning (DL), provide

promising solutions to eliminate these limitations [8], and
[9]. CNN models VGG and ResNet have shown better
results in the analysis of CT and histopathological data
[10]. Likewise, most classical ML algorithms such as
Support Vector Machines (SVM), Logistic Regression,
Random Forest, and Naive Bayes have proven to be
successfully used in prediction tasks in oncology [14].
Furthermore, the ensemble and hybrid methods have
demonstrated great capability in risk prediction and trend
estimation [8], and [9].

The availability of datasets to the general population such
as the Kaggle Lung Cancer Dataset is an effective source
of developing and testing predictive models based on
demographic, lifestyle and other aspects of clinical
characteristics [12]. Besides clinical uses, Al based
analytics also enhance healthcare management by
enhancing patient stratification, resource allocation and
cost effectiveness [5], and [14]. This study employs the
machine learning techniques on the lung cancer data on
the Kaggle dataset to evaluate the predictive accuracy as
well as help in clinical decision-making and strategic
healthcare management.

A. Study Obijective

The goal of this endeavor is to use a publicly accessible
Kaggle dataset to create and assess Al/ML predictive
models for lung cancer survival.
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The work aims to:

a) Support clinical practice by predicting patients'
survival status (Survived/Not Survived) early
and accurately based on clinical, lifestyle, and
demographic characteristics; and

b) Help healthcare administrators make strategic
decisions by connecting survival predictions to
planning, resource allocation, and cost-effective
management of oncology services.

B. Contribution of this Study
The main contributions of this study are as follows:

e Integration of survival prediction + strategic
healthcare decision-making.

e  Using feature ranking (Chi-square + ReliefF).

e Using interpretable ML models for clinical
transparency.

e Using a large-scale public dataset for reproducible
benchmarking.

e Implications for hospital planning, insurance, and
triage.

II. BACKGROUND STUDY

According to authors several machine learning algorithms
such as Naive Bayes, Support Vector Machines (SVM),
Logistic Regression, and Artificial Neural Networks
(ANN) have been extensively applied in detecting and
diagnosing lung cancer [1]. Their study formed the
foundation of the integration of Al into healthcare
decision making by explaining the comparative benefits
and costs of various algorithms.

Researchers examined the frameworks of Machine
Learning (ML) to classify the pulmonary nodules and the
authors were concerned with how they will improve the
accuracy of the diagnosis and reduce unnecessary clinical
follow-ups [2]. They also noted issues with dependability
and validation or impediments to clinical application,
based on the UCI lung cancer data. Research analysts
used the following classifier: SVM, K-Nearest Neighbors
(KNN), and Convolutional Neural Networks (CNN) [3].
They found out that SVM was often more accurate than
CNN and KNN, and can be applied in the early detection
task. It was analyzed that such methods as SVM, Naive
Bayes, Decision Trees, and Logistic Regression could be
used to forecast lung cancer [4]. Their results explained
the importance of the evaluation of algorithms in
enhancing early diagnosis and survival. A study indicated
that lung cancer is not detected at its initial stage, which
also leads to the high mortality rate of this condition [5].
In order to facilitate early detection, classification, and
evaluation of the malignancy, they emphasized the
increasing importance of the Computer Aided Diagnostic
(CAD) systems that are based on the machine learning,
deep learning, and image processing techniques applied
to the UCI data. To allow distinguishing between the
carcinogenic and the non-carcinogenic cases, a study
utilized classifiers such as Radial Basis Function (RBF)
network in WEKA on the UCI data [6]. This study has
not only proven the applicability of machine learning in
classification, but it has also proven smoking to be a
significant risk factor. In order to find the genetic leads

concerning lung cancer, a research study employed the
eco- genomics, the data on expression of the genes of the
repositories like the Kent Ridge Biomedical Repository
[7]. 1t was discovered that genetic and environmental
elements perform better to enhance performance in
prediction.

Random Forest was among other ensemble based
methods of identifying the high risk persons that was
identifies and tested [8]. These techniques according to
their research have the potential of creating more accurate
and reliable lung cancer risk prediction models in order to
interfere early. Analysts have used techniques such as
Support Vector Regression, Backpropagation neural
network and Long Short Memory (LSTM) to predict the
presence of lung cancer on a large scale basis [9]. Their
study showed how machine learning can be used in trend
analysis and predictive epidemiology. Examiners
developed deep learning models based on relevant CNN
architectures such as AlexNet, LeNet, and VGG-16 that
were applied on CT images [10]. Their results indicated
that early diagnosis was possible since their CNN-based
models showed the feasibility of distinguishing between
normal and aberrant lung tissues. A research based study
used image preprocessing, segmentation, and feature
extraction with classifiers which include SVM, Random
Forest and ANN [11]. The hybrid pipeline was effective
in separating benign and prevalent tumors, which proves
the usefulness of hybrid pipelines in machine learning
and image processing.

Researchers expanded the use of machine learning to
forecast a wide range of cancer such as prostate, breast,
and lung cancers [12]. They applied algorithms such as
SVM, KNN, CART and random forest to classify the
tumors into malignant, benign and high risk groups,
indicating the diversity of machine learning in oncology.
A study utilized text based symptom datasets using
classic machine-learning classifiers to predict lung-cancer
[13]. Nevertheless, the work was later withdrawn because
of methodological inconsistencies, and even when it was
published, the study failed to cover the survival analysis,
and even in its initial form, it failed to cover the
structured clinical characteristics, including comorbidities
and forms of treatments. Examiners predicted the survival
of lung-cancer patients that were trained on the SEER
clinical registry using supervised machine-learning
models, such as Gradient Boosting, Decision Trees, and
ensemble classifiers [14]. Even though their study
showed good predictive work, it failed to project model
outputs to the healthcare management, operational
planning, or resource allocation. Researchers were also
interested in the CT-image-based diagnosis with the help
of deep-learning architectures CNN, VGG, and ResNet
[15]. Although they worked well in classifying an image,
their method did not model the outcome of survival and
did not also include demographic, lifestyle, or treatment-
related factors. Research Scientists studied supervised
ML methods in non-medical setting (telecom churn
forecasting) where the authors showed their prior
experience with the interpretable models, but the study
was not related to clinical survival modeling or medical
decision-making [16]. Using structured meteorological
datasets, In another study which assessed a number of
machine-learning models for precipitation forecasting in
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Australia, concentrating on comparative performance
across various geographic regions [17]. The study showed
that rainfall variability can be accurately captured using
ML techniques; In order to facilitate smart-agriculture
planning in Pakistan, some researchers suggested a data-
driven machine learning strategy for rainfall prediction
[18]. The study examined soil-moisture and
meteorological variables wusing supervised learning
techniques.

In order to forecast survival outcomes for patients with
Non-Small Cell Lung Cancer (NSCLC) who experienced
brain metastases, Researchers used machine-learning
approaches. Their study demonstrated the promise of Al
for outcome prediction in late-stage oncology by
stratifying patients by prognosis using supervised
machine learning models [19]. Nevertheless, the study
was restricted to a specific clinical subgroup (NSCLC
with brain metastases) and relied on specific clinical
factors, which limits its applicability to larger populations
of lung cancer patients. Furthermore, neither operational
planning nor healthcare management viewpoints were
included in the study.

To predict lung cancer survival, researchers suggested a
hybrid approach that combines statistical survival models
and machine learning classifiers [20]. Their research
demonstrates the value of combining Machine Learning
(ML) with conventional statistical techniques like Cox-
based survival modeling. Nevertheless, interpretability,
feature-ranking, and integration with clinical decision-
making workflows were not investigated, and the
investigation was carried out on a small dataset.
Additionally, the analysis did not apply its predictions to
administrative or strategic aspects of healthcare systems.
A thorough assessment of machine learning and deep
learning models for lung cancer level/stage classification
was carried out by researchers [21]. Models with

competitive accuracy on structured feature sets included
Random Forest, SVM, CNNs, and hybrid techniques.
However, the study did not look at how model outputs
could help with resource allocation, patient prioritizing,
or medium-term healthcare planning; instead, it
concentrated on stage categorization rather than survival
prediction. Furthermore, there was no examination of
operational deployment or ethical issues in the paper.

The current research, in contrast, fills several of the gaps
present in these papers; (i) by operating on structured
clinical and lifestyle characteristics, rather than only
imaging or text data, (ii) by specifically targeting survival
prediction over detection alone, (iii) by relying on
interpretable ML models, which could be used in clinical
transparency, and (iv) by connecting survival predictions
to medium-term hospital planning and strategic
healthcare decision-making, an area that has not been
adequately explored in prior studies of lung-cancer
prediction. The literature review reveals that the machine
learning and deep learning models were already popular
in predicting, detecting, and analyzing lung cancer
survival. Although such traditional classifiers like SVM,
Naive Bayes and Logistic Regression have consistently
performed on both clinical and symptom based data, the
most recent development on CNNs, ensemble and hybrid
pipelines has shown to be successful at high rates on
image classification, risk and trend prediction. Despite
such a massive improvement, difficulties such as data
reliability, validation, and clinical integration still exist.
The combination of these works forms a solid base of Al
solutions in the field of lung cancer diagnostics and
prognosis contributing to the fact that more powerful and
clinically valid predictive algorithms are built.

The Table I shows the Comparative Overview of Recent
Lung Cancer Al Studies.

Table I: Comparative Overview of Recent Lung Cancer Al Studies

No Study Dataset Methods Objective Limitation / Gap
Lung cancer prediction usin No survival prediction; no
1. | Raoofetal. [1] UClI NB, SVM, ANN 9 P g healthcare management
classical ML - :
integration
Classification based on Small dataset; focus only on
2. | Abdullah etal. [3] uel SVM, KNN, CNN correlation-selected features early detection
3. | Lynchetal. [14] SEER Gradient Boosting, Decision Sgr\_nval prgdlctlon using No I|n_k to strategic healthca(e
Trees, Ensembles clinical attributes operations or resource planning
CT Image No clinical-feature—based
4. | Mamatha et al. [15] Datasegt‘ CNN, VGG, ResNet Imaging-based tumor diagnosis survival modeling; image-only
approach
. Survival prediction + strategic Adds feaﬁurg ran_king i
5. | This Study Kaggle DT, RF, KNN, NB, GB healthcare decision-makin managerial implications; still
9 needs clinical validation
attributes such as age, gender, smoking behavior and
1. METHODOLOGY

This paper adheres to the workflow depicted in Figure 1,
with the primary stages being the data preparation, data
analysis, and evaluation of the model.

A. Data Source

The data used within the research was the one at the
Kaggle repository, which contains information about the
patients with lung cancer publicly. It includes the

symptoms, which the attributes can be used as predictive
attributes. The reason behind this was that the selection of
the attributes was done based on their clinical
significance in understanding the course of illness. It has
17 columns and 199,999 rows of patient characteristics,
diagnoses and information about their treatment. It has
three numerical features and ten categorical features
(three of them are numerical and the rest are categorical
features), two date features and two metadata features.
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The target measure of the study is survival (Survived /Not
Survived). It is important to note that there are no values
that are not present in the data. The most meaningful
features were mentioned in the stage of preprocessing so
that they could be incorporated in the modeling step. The
data was further divided into two (training and testing) to
quantify the effectiveness of models applied in the
research; the models applied are Naive Bayes, Random
Forest, K-Nearest Neighbors (KNN), Gradient Boosting,
and Decision Tree. Performance was evaluated using
evaluation metrics such as accuracy, precision and recall.
It was repeated in preprocessing, feature selection and
model training to enhance the predictive power and
reliability.

The Kaggle lung cancer dataset's size, accessibility, and
organized representation of important clinical and
demographic factors are what drive its utilization. In
order to enable repeatability and comparison across
various modeling methodologies, public benchmark
datasets are frequently employed in the early phases of Al
research in healthcare. Prior to clinical implementation, a
number of earlier studies on cancer prediction and
survival analysis also relied on public archives. We treat
this study as a methodological and benchmarking
contribution rather than a finalized clinical tool in
accordance with this practice.

Raw Data Gather
Lung Cancer

Yy

Missing Values,
Distribution, Features
Importance

Pre-process Dataset

k.

4

Feature Extraction,
Relevant Feature Selection,
Training and Testing

-

Analyse Models,
Utilize Machine
Learning

4

Names Of Models

KNN,
Random Forest,
Naive Bayes,
Decision Tree

Outcome

k.

y

Classification Task

A,

y

Results

Confusion
Matrix

Figure 1: Workflow of the Study

B. Data Preprocessing and Preparation

The dataset was preprocessed to be of quality, consistent
and suitable to be analyzed using machine learning
methods. As the Kaggle data did not have any missing
data, the data imputation was not necessary. The
attributes analyzed in the statistical design to detect
significant trends were the main features of age, smoking
status, and gender. This was followed by the feature
importance analysis which was conducted to give the
most relevant predictors a priority hence enhancing
efficiency of the model and eliminating noise. The target
variable was a categorical variable which denoted
survival (Survived/Not Survived). Lastly, the categorical
variables like the smoking status, type of treatment and

comorbidities were coded as numerical values to allow
the application of machine learning algorithms. The
Figure 2 shows the Data analysis using orange flow and
Table 1l summarizes the characteristics of the Lung
Cancer dataset used in this study, including its size,
feature composition, target variable, Meta attributes, and
the absence of missing data as defined in the Orange
workspace.

We used stratified sampling to divide the dataset into
training and testing sets in order to minimize bias caused
by imbalance. We assessed the models using precision-
recall behavior, Matthews Correlation Coefficient
(MCC), accuracy, and AUC.
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Distributions

Data Info

Data Table

Feature Statistics

Select Columns

Data Table (1)

Select Rows

Figure 2: Dataset Analysis using Orange Flow

Table 11: Orange Workspace Description

S. L

No. Property Description

1. Dataset Name Lung Cancer

2. Size 199,999 Rows, 17 Columns

3. Features 10 Categorical, 4 Numeric

4 Target Variable Categorical Outcome with 2
Classes

5. Meta 2 Text Attributes

6. Missing Data None

C. Class Imbalance Handling

The dataset contains an uneven distribution between the
Survived and Not Survived classes. Although ORANGE
does not support SMOTE or advanced resampling
techniques directly, the “Balance Data” widget was used
to adjust class weights and reduce skew during model
training. Additionally, stratified training/testing splits
were applied to preserve class proportions. This ensures a
more reliable evaluation, especially when combined with
imbalance-robust metrics such as MCC and Precision—
Recall analysis.

D. Data Features Statistics

The data set includes information on patients having lung
cancer in detail covering their treatment route and their
lifestyle and medical history.

Age defines the age of the patient and ID is a unique
identifier. Nation of origin of every patient is specified in
Country and the date of diagnosis and the date of the end
of their treatment are captured in the Timeline, and the
most vital lifestyle and clinical characteristics are
Smoking Status, which defines the smoking history of the
patient and Cancer Stage, which identifies the stage of
cancer progression. There are also other health variables
like the level of cholesterol in the body and the Body
Mass Index (BMI). Comorbidities are in the form of
binary indicators like cirrhosis, asthma, hypertension, and
other cancers. Lastly, Treatment Type: This identifies the
medical procedures one undergoes, i.e. chemotherapy,
surgery or radiation. The Survived (Survived/Not
Survived) is a categorical feature that is to be used to
define the target variable in the proposed study. Taken
together, these characteristics give a global perspective on
patient demographics, clinical conditions, and treatment
information, thus the dataset is appropriate to test
machine learning models.

The overall feature statistics are shown in figures, i.e.,
Figure 3 to 5.

Name Distribution

S
_EEE_

RSN

age

bmi

Soiia = E = E E g g g g e
[ ]

gender

Mean

100000

55.00

30.490

233.73

Mode Median Dispersion Min. Max. Missing

1 100000 0.58 1 199999 0 (0 %),

0 (0 %)

19.8 30.5 0.275 16.0 450 0 (0 %),

242 0.19 150 300 0 (0 %),

Male 0.693 0 (0 %)

Stage Il 139 0(0 %)

Figure 3: Feature Statistics 1
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Figure 4: Feature Statistics 2
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No 0.693 0(0%)

Passive Smoker 1.39 0 (0 %)

1 0.561 0 (0 %)

0 0.691 00 %)

0 0.534 00 %)

0 0.299 00 %)
Chemotherapy

Figure 5: Feature Statistics 3

In Figure 6, a ranking analysis of the lung cancer data has
been provided with two scoring processes, namely
ReliefF and Chi-square (2). The predictive value of each
of the characteristics in the development of lung cancer is
established. The information encompasses country,
condition of survival, body mass, age, form of therapy,
asthma, cancer stage, cholesterol, cirrhosis, hypertension,
additional cancer, smoking condition and family history.

The more the higher the score the better are the
correlations of each feature with the target variable,
depending on the chi-square. Conversely, ReliefF values
estimate the discriminative power of the features; that is,
the higher the value the more the focus on the features
that give the greatest classification to the classes. This
ranking finds the most important indicators of the
creation of correct and sound machine learning models.

x° ReliefF
1 treatment_type 2.503 . -0.006
2 family_history — 0.588 | -0.004
3 gender 1478 -0.000
4 other_cancer 0.002 0.004
5 smoking_status 1.466 0.006
6 hypertension - 0.315 0.006
7 asthma - 0.501 0.006
8 age 1.148 0.012
9 cirrhosis - 0.220 0.016
10 brmi - 0.252 0.018
11 cancer_stage — 0.516 0.022
12 cholesterol_level 1.179 0.027

Figure 6: Rank Statistics of Features

Significantly, the ReliefF value and Chi-square values of
such characteristics as survived and type of treatment use
are positive and relatively high, which indicates their
relevance to the outcomes predictions related to lung

cancer. On the other hand, low ReliefF scores of traits
may not be so important and even less probable to reduce
the predictive power of the model. This ranking is
necessary in order to ascertain the most influential
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predictors to machine learning modeling in lung cancer
studies. When it comes to a manual selection process the
top five features are prioritized. The dataset also gives the
gender distribution of the patients as shown by the bar
chart. There are approximately 100,000 entries in each
group, approximately an equal amount of male and

female patients. The dataset is protected from gender bias
because of its equal representation, which enables a fair
assessment of predictive models for patients of both
genders shown in Figure 7 and the overall data
represented in Figure 8.

80000 — @ Female
F ® rale
Flelelels) ; ‘
50000 :—
50000 |-
%‘: 40000 |-
=3 B
e |-
30000 |-
20000 -
ol
1 L
Q 1
survived
Figure 7: Distribution on Gender Target Feature
cancer_stage smoking_status bmi cholesterol_level hypertension asthma cirrhosis other_cancer treatment_type survived
1 Stage | Passive Smoker 294 199 [ 0 0 1 0 Chemotherapy 0
2 Stage Il Passive Smoker 41.2 2801 1 0 0 Surgery 1
3 Stage Il Former Smoker 44.0 2681 1 0 0 Combined 0
4 Stage | Passive Smoker 43.0 2411 1 0 0 Chemotherapy 0
5 Stage | Passive Smoker 19.7 178 | 0 0 0 0 Combined 0
6 Stage | Never Smoked 376 2741 0 0 0 Radiation 0
7 Stage Ill Passive Smoker 43.1 259 I 0 0 0 0 Radiation 1
8 Stage IV Former Smoker 2538 195/1 1 0 0 Combined 0
9 Stage Ill Current Smoker 21.5 236 0 0 0 0 Chemotherapy 0
10 Stage IV Current Smoker 17.3 1831 0 0 1 Surgery 0
11 Stage IV Never Smoked 30.7 2621 1 0 0 Surgery 1
12 Stage Il Former Smoker 339 2870 0 0 0 Combined 0
13 Stage Il Current Smoker 256 1630 1 0 0 Chemotherapy 0
14 Stage IV Never Smoked 263 1741 1 1 0 Combined 0
15 Stage Il Former Smoker 427 2591 1 0 0 Radiation 0
16 Stage IV Passive Smoker 19.6 1581 1 1 1] Surgery 1]
17 Stage Ill Former Smoker 21.7 195/ 1 0 0 0 Radiation 0
18 Stage Il Former Smoker 23.1 213/ 0 0 0 0 Combined 0
19 Stage IV Current Smoker 434 251/ 0 1 0 1 Surgery 1]
20 Stage Ill Current Smoker 368 2701 1 0 0 Chemotherapy 0
21 Stage | Passive Smoker 246 2191 0 1 1] Radiation ]
22 Stage 11l Former Smoker 16.0 2321 1 0 0 Radiation 1
23 Stage IV Former Smoker 38.0 2951 1 1 0 Surgery 0
24 Stage | Never Smoked 380 28711 0 0 1 Chemotherapy 0
k

Figure 8: Data Table

The study's dataset includes survival outcomes as well as
clinical, lifestyle, and treatment-related data about
individuals with lung cancer. Its characteristics include
body mass index (BMI), cholesterol, smoking status
(never smoked, passive smoker, former smoker, or
current smoker), and cancer stage (Stage 1-1V). There is
also evidence of concomitant conditions such as cirrhosis,
asthma, hypertension, and various cancers. The details of
the treatment, such as chemotherapy, radiation, surgery,
or a combination of these, are also covered. The goal

variable is a binary representation of the patient's survival
status. This dataset provides a thorough foundation for
lung cancer survival prediction modeling and aids in
healthcare decision-making by combining lifestyle and
medical aspects.

E. Model Development

The number of machine learning methods for predicting
patient survival was compared using the ORANGE data
mining platform. It is worth mentioning that the use of
somewhat classical machine learning models in this
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experiment was not fortuitous. The predictive power of a
model in its raw form is as important as its transparency
and interpretability in a number of clinical applications.
Random Forests and Decision Trees can be read by
humans and have importance profiles, which can be
discussed directly with clinicians and administrators and
other machine learning models too utilized in study.
Although more complex deep learning models might be
more accurate in theory, they would be a black-box, and
thus not be accepted in healthcare decision-making due to
the traceability. Therefore, what we focus in this work is
the set of interpretable models which may be adopted in
practice in a real way.

The models listed below are assessed:

a) Decision Tree (DT):
This model makes step by step root-to-leaf decisions
using a sequence of yes and no questions on patient
characteristics that are like a tree to identify survival.

b) Random Forest (RF):
Random Forest develops a number of Decision Trees
depending on the subsets of the data, and averages the
results through majority voting. It is an ensemble
approach that reduces overfitting, increases the
generalization and produces a more accurate and more
reliable forecast of patient survival.

c) Naive Bayes (NB):
Naive Bayes is a predictive method of survival based on
probability theory and under the condition that the
features of patients are conditionally independent. It is
straightforward but effective at medical classification
since it can determine the probability of survival by
adding the respective probabilities of every feature.

d) K Nearest Neighbors (KNN):
The K-Nearest Neighbors (KNN) model predicts a
patient's survival based on the outcomes of the closest,
most similar patients in the data. When making a choice,
it considers "neighbors" who share comparable
characteristics.

e) Gradient Boosting(GB):

Gradient Boosting is an ensemble based learning
algorithm where the prediction models are constructed in
a chain fashion with each new tree making corrections to
the older ones. It integrates several weak learners, usually
shallow Decision Trees, into a strong predictive model
through loss optimization via gradient descent. Gradient
Boosting is a good approach to predicting survival in
patients because it can effectively represent the complex
non-linear relationships between patient characteristics
and patient survival outcomes with high precision and
resistance to overfitting as long as tuned appropriately.

F. Hyperparameter Tuning and Model Settings

All the models have been set and optimized through the
parameter-setting and optimization capabilities of the
ORANGE data mining platform. In the case of the

Decision Tree classifier, we altered the maximum depth
of the tree and the minimum sample size in each tree leaf
to prevent overfitting and still achieve interpretability.
Random Forest model has been optimized by changing
the amount of trees per random forest (between 50 and
200), the maximum depth, and the bootstrap sampling. In
the case of K-Nearest Neighbors (KNN) we tried various
values of. K (3-15) and distance measures. Naive Bayes
made use of its default smoothing parameters as is typical
in medical classification tasks. The learning rate, the
number of boosting stages and the tree depth were
adjusted to tune Gradient Boosting. In general, we
preferred parameter settings that offered an acceptable
predictive accuracy and the complexity of the model,
which is required in clinical settings related to transparent
and explainable models.

IV. RESULTS OF MACHINE LEARNING MODELS

These models were chosen due to their ability to handle a
range of data types and their proven track record of
effectiveness in classifying tasks. As shown in Figure 9,
the Orange dashboard sample summarizes the
performance of the evaluated models.

The Figure 9 shows the arrangement of orange widgets
and how the results of the machine learning models are
displayed. Such as k-Nearest Neighbors (KNN), Decision
Tree (DT), Random Forest (RF), Gradient Boosting (GB),
and Naive Bayes (NB), were compared based on six
commonly used evaluation metrics, such as Area under
the Curve (AUC), Classification Accuracy (CA), F1-
Score, Precision, Recall, and Matthews Correlation
Coefficient (MC). The result is presented in Table III.
The assessment was on precision, discriminative power,
and predictive balance. The decision tree performed well
on all measures, and the precision, recall, accuracy (CA),
AUC, Fil-score, and MCC values were 0.929, 0.931,
0.931, 0.983, 0.928, and 0.790, respectively, which is
why it is the best-performing model in general. This
trade-off between high precision and recall proves this to
be effective in prediction as well as discrimination. The
performance of the Random Forest was also very
impressive, as the accuracy was 0.912, the accuracy was
0.988, the F1-score was 0.903, the precision was 0.919,
the recall was 0.912, and the MCC was 0.731. Random
Forest produced an outstanding discriminatory power, but
its MCC was worse than the Decision Tree (0.790), which
corrected the previous inconsistency. Nonetheless, RF has
been a stable and resilient classifier that has always gotten
good results. By contrast, weaker results were obtained
with kNN, with an accuracy of 0.798, an AUC of 0.788,
an Fl-score of 0.757, a precision of 0.771, a recall of
0.798, and an MCC of 0.275. Naive Bayes did not
perform well, with an accuracy of 0.780, an AUC of
0.507, an F1-score of 0.684, a precision of 0.609, a recall
of 0.780, and an MCC of 0.000, which indicates that it
has no significant predictive capability. Equally, Gradient
Boosting reported low predictive validity, with an
accuracy of 0.781, an AUC of 0.535, an Fl-score of
0.684, a precision of 0.829, a recall of 0.781, and an MCC
of 0.009.
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Table I11: Performance Comparison of Machine Learning Models(Model Used for Results)

Nsd Model AUC Accuracy (CA) F1-Score Precision Recall MCC
1. Decision Tree 0.983 0.931 0.928 0.929 0.931 0.790
2. Naive Bayes 0.507 0.780 0.684 0.609 0.780 0.000
3. Gradient Boosting 0.535 0.781 0.684 0.829 0.781 0.009
4. k-Nearest Neighbors 0.788 0.798 0.757 0.771 0.798 0.275
5. Random Forest 0.988 0.912 0.903 0.919 0.912 0.731

The key findings in Figure 9 show that the DT model
outperformed all the others without a doubt, boasting the
greatest accuracy of 0.931 and a well-balanced precision
of 0.929 and recall of 0.931. This indicates that it can
accurately forecast the outcomes of this categorization job
far better than kNN or Random Forest. The Random
Forest algorithm also performed well, achieving a high
accuracy of 0.912 and fair metrics, but its results were
slightly worse than those of the Decision Tree. With a
low precision of 0.609, Naive Bayes, on the other hand,
showed the least predictive potential, suggesting that it is
not an appropriate algorithm. For this dataset, the
Decision Tree is the most dependable classifier for
forecasting survival outcomes since it has great accuracy
and a well-balanced precision and recall performance, as
shown by the results.

A. Confusion Matrix for K Nearest Neighbor

The confusion matrix of the k-Nearest Neighbor (kNN)
model in Figure 10 illustrates the level of the model in the
binary survival categorization test in terms of survival
versus non-survival. According to the definitions of True
Negatives and True Positives in the matrix, the model
was correct in classifying 150,466 and 9,229 cases as not
surviving and surviving, respectively. Nevertheless, the
model did not succeed in its classifications. It has

forecasted 34,673 real not survived cases as survived
(False Positives) and 5,631 real survived cases as not
survived (False Negatives). The overall amount of correct
predictions (159,695) and false guesses (40,304) gives a
definite upper hand to a correct classification. At a two
way classification, the overall accuracy is approximately
79.8 percent. The survival rate is well predicted by this
model with many successful predictions compared to
failure predictions.

Predicted
0 1 )]
0 150466 5631 156097
E 1 34673 9229/ 43902
¥ 185139 14860 199999

Figure 10: KNN Classifier Confusion Matrix of Lung Cancer Survival
Prediction Indicating the Proportion of the Survived and Not Survived
Classes that are True Positives, True Negatives, False Positives, and
False Negatives
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B. Confusion Matrix for Random Forest

According to Figure 11, the accuracy of the classification
algorithm using the Random Forest is the percentage of
cases that the classification algorithm correctly classified
out of 155,716 cases, according to which 26,603 were
correctly assigned to the having survived category (True
Positives), and 26,603 were correctly assigned to the
having not survived category (True Negatives).
Nevertheless, misidentifications still influence the
effectiveness of the model, with 381 successful survived
cases of the model being predicted to not survive (False
Negatives). Moreover, 17,299 real non survival cases
were forecasted to be the survival (False Positives). The
number of correct predictions was 182,319, and this is
much more than the number of incorrect predictions
(17,680). The Random Forest model in this case is strong
and significant in terms of predictive power on survival
outcomes, as indicated by the confusion matrix where the
overall prediction of a binary categorization scenario is
approximately 91.2%.

Predicted
0 1 )3

0 155716 381 156097

—

17299 26603 43902

Actual

3 173015 26984 199999

Figure 11: Random Forest Classifier Confusion Matrix of Lung Cancer
Survival Prediction Indicating the Proportion of the Survived and Not
Survived Classes that are True Positives, True Negatives, False
Positives, and False Negatives

C. Confusion Matrix for Decision Tree

Figure 12 depicts the confusion matrix of the Decision
Tree classifier that the researcher employed to determine
the performance of the model in the prediction of survival
in lung cancer.

Predicted
0 1 )]

0 152614 3483 156097

—

10412 33490 43902

Actual

3 163026 36973 199999

Figure 12: Decision Tree Classifier Confusion Matrix of Lung Cancer
Survival Prediction Indicating the Proportion of the Survived and Not
Survived Classes that are True Positives, True Negatives, False
Positives, and False Negatives

The model appropriately categorized 152,614 non-
survivors (true negatives) and 33,490 survivors (true
positives). There were relatively few misclassifications,

3,483 non-survivors were wrongly predicted as survivors
(false positives) and 10,412 survivors were wrongly
predicted as non-survivors (false negatives). On the
whole, the matrix indicates that the Decision Tree model
would have an excellent balance of both correct survivor
and non-survivor prediction with the proportion of errors
being relatively low.

V. MODEL TRAINING AND EVALUATION
CRITERIA

Each algorithm was trained using the preprocessed
dataset, and performance was evaluated based on such
measures as specificity, precision, recall, and F1-score.
The classification exercise was primarily aimed at
predicting two possible results.

1. Survived
2. Not Survived

To reduce bias and guarantee the reliability of the results,
cross-validation techniques were used. The models'
comparison analysis revealed which algorithm was most
effective at predicting survival. This section describes the
metrics also known as key performance indicators, or
KPIs that will be used to assess the algorithm's output.

A. Accuracy

Number reflecting how well the predicted model
performed. The accuracy formula shown in Eq. (1):

TP+TN

Accur = —
CCUTACY = T FPITN+FN

1)
TP refers to where the model produces a positive class
and the model correctly classifies the result as a positive.
We call FP a False Positive outcome in a scenario
whereby the model erroneously marks the positive class
as a negative one. The outcome that the model predicted
the negative class to be is what is referred to as the true
negative, or TN. In the context of detection, a false
negative, or FN is the name associated with negative
response in a situation where a model thinks that the other
category is wrong.

B. Precision

Precision is the proportion of cases that are accurately
classified as positive. Specifically, if a model predicts
positive numbers then the formula is shown in Eq. (2):

TP

Precision = —— (2
TP+FP

C. Recall

Recall is defined as the proportion of successfully
recognized positives to all positives. This formula is the
same as the sensitivity formula as shown by Eqg. (3):

Recall =

3

TP + FN
D. F1 Score

One metric for assessing a classification model's
performance is the F1 score. It is a single metric that
balances precision and recall by taking the harmonic
mean of the two. It is shown by the Eq. (4).

(Precision x Recall)

F1 Score = 2x 4)
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The question of which algorithm is better may arise when
precision and recall alone are not enough to assess
performance, for as when one mining technique has
higher accuracy but lower recall than another. This issue
can be resolved by using the F1 score metric, which
provides the mean of recall and precision. The F1 score is
an industry standard for assessing a classification model's
performance. The computation is displayed in Eq. (4). By
combining recall and precision into a single score, it
offers a fair assessment of a model's accuracy.

E. Matthews Correlation Coefficient (MCC)

Matthews Correlation Coefficient MCC is an equal-tailed
estimate statistic that takes into account the four
responses of a binary classification problem: true
positives (TP) and true negatives (TN), false positives
(FP) and false negatives (FN). In contrast to accuracy
which can be misleading when applied on unbalanced
datasets, MCC offers a more accurate estimation of the
overall quality of the classifier. It is a value of -1 to +1.
Overall mathematically shown in Eq. (5).

(TPXTN)—(FPXFN)

Mce = J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

®)

The use of MCC is particularly important in this study
because it provides a more reliable summary of model
performance under class imbalance compared with
accuracy alone.

F. Class Distribution Challenges and Mitigation
Strategies

In this study, the dataset is imbalanced, with
approximately 80% of patients in the Not Survived class
and 20% in the Survived class. Such skewed class
proportions can bias machine learning models toward the
majority class. Such prejudiced allocations can bias the
machine learning models so that they represent the
majority, and consequently, they achieve a falsely high
accuracy but not the outcomes as in the minority class.
Such skew is particularly significant in medical
prediction, where the error of false negativity (indicating
that the patient survives when he or she does not) can be
life-threatening to the clinical process. To address this
weakness, in future studies, we ought to take into account
the application of resampling techniques, such as
Synthetic Minority Oversampling Technique (SMOTE),
stratified cross-validation, or cost-sensitive learning, such
that both classes are better represented. In addition,
alternative metrics that are not pegged on the accuracy
including MCC, F1-score and Precision-Recall AUC are
to be targeted since they are more balanced and
dependable assessments of the performance of classifiers
on unbalanced medical data.

Although class imbalance is still a problem, skew was
largely compensated for by automatically modifying class
weights during training using ORANGE's built-in
"Balance Data" widget. However, ORANGE does not
support  more  sophisticated  imbalance-handling
techniques like SMOTE, cost-sensitive learning, or
ensemble-based resampling. In order to further enhance
minority-class recall and model fairness, these methods

will be implemented in future versions of this work using
a Python-based pipeline.

VI.  INTERPRETATION OF TARGET FEATURE

The models were built to classify the patients based on
whether they survived or not based on their demographics
and clinical features. The target variable is survivorship,
which can be of two categories: 0 (survived) and 1 (not
survived). The image highlights 156,097 examples in an
unbalanced sample, the bigger percentage of which were
patients who did not manage to survive the outcomes of
the lung cancer. The total number of the group that did
not survive is 43,902, and there was the number of the
group that did survive. Both groups comprise both male
and female patients, as observed in Figure 13; however,
the size of the classes is very different: the classes consist
of the not survived group with almost 80% and the
survived group with 20%. Such categorization division is
justified by the chi-squared test (y* =2.94, p = 0.086) that
shows that survival status and gender are not statistically
significantly associated. The rankings of the statistical
features indicate that gender is not a major predictor of
survival, whereas other aspects of the treatment, the level
of cholesterol, smoking behavior, and type have more
discriminatory features. Decision trees and random
forests, among other machine learning models, yielded
high  AUC and accuracy in categorizing survival,
implying that survival is important and the objective
variable to be discriminated in the lung cancer data
collection. Even though gender does not provide useful
information to inform the discriminative variable in such
an environment, the integration of clinical predictors and
outcome characteristics allows the development of a
successful predictive model to determine survival, shown
in Figure 14. The boxplot shows how the gender groups
are distributed in terms of survival. The graphical
comparison reveals that there is no great asymmetry in
the number of survivors and non-survivors of both sexes,
and the trend is alike in both genders.

The clinical implications of prediction errors are that the
level of risk associated with the various predictive errors
is different. The most dangerous are false negatives, or
the situation in the model where the patient can be
predicted to survive but, in fact, the patient dies. Such
errors can result in the clinicians giving less intensive
monitoring, taking too long to escalate treatment, or even
missing early palliative interventions. False positives,
conversely - predicting a patient will die when the patient
does not in fact die, might cause excessive resource
allocation, but they are usually not as damaging as the
missed risk-patients. The confusion matrices of each
model thus serve as a good understanding of how the
model would perform in the real clinical triage or risk-
stratification environment. Practically, healthcare teams
can change the decision thresholds to be more sensitive to
the non-survived group so that high-risk patients can be
detected even at the cost of a higher number of false
positives. This is a threshold change that is typical of the
clinical setting where reducing the number of missed
critical cases is the priority.
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Figure 14: Boxplot Result Analysis on Outcome

VII. NOVELTY OF WORK

The originality of this study is that it targets survival as a
predictive feature and simultaneously, integrates clinical
outcome predictive modeling and strategic health care
decision making based on the strength of Artificial
Intelligence (Al) and Machine Learning (ML). Unlike the
previous studies, which typically concentrate on the
clinical, or algorithmic performance, this study cuts
across the medical and management domains, and this is
advantageous to both the patients and the health
institutions leading to the provision of a comprehensive
paradigm. It is based on a large scale Kaggle dataset of
around 200,000 records of patients and covers a broad
spectrum of demographic, lifestyle, and clinical
characteristics, such as smoking status, BMI,
comorbidities, treatment type, and gender. Further,
despite the fact that the analysis of the various ML
algorithms, including KNN, Decision Tree, Random
Forest, Naive Bayes, and Gradient Boosting, is performed
using the ORANGE data mining system, feature ranking
using the assistance of Chi-square and ReliefF assists in
exposing the most noteworthy factors that influence the
survival  outcomes.  This  two-pronged clinical
administrative strategy makes sure that the research not
only replaces an instrument of diagnosis with Al, but also
makes it a strategic facilitator of healthcare systems. Such
predictions can inform policy makers, hospitals and
health insurance companies to reduce costs of treatment,
distribute resources well and provide much equal and
gender neutral healthcare.

In addition to technical performance, this research paper
makes a direct linkage of the outputs of survival
prediction to strategic decisions in healthcare. The
proposed models will be able to inform medium-term
planning in oncology departments regarding staffing,
usage of chemotherapy chairs, scheduling of
radiotherapy, and the allocation of ICU or high-
dependency beds by identifying high-risk and lower-risk
groups of survival.

VIIl. MEDIUM-TERM IMPLICATIONS FOR
HEALTHCARE MANAGEMENT

The most effective models can provide the survival
probability as risk strata (scale: high, medium, and low
probability of survival). Such strata may be actionable
hospital planning and hospital management inputs. As an
illustration, patients that were characterized as high-risk
non-survivors could be given priority to more follow-up
visits, multidisciplinary tumor boards, and early palliative
care consultations. Aggregate forecasts within a group of
patients at the operational level can be useful in
supporting oncology units to forecast the demand of
chemotherapy rooms, radiotherapy rooms and critical
care rooms within a specific planning horizon. Moreover,
such risk profiles can be utilized by insurers and policy
makers to develop targeted intervention programs to
patients with certain comorbidities and clinical
weaknesses. This shows the usefulness of Al-based
survival prediction as a clinical diagnosis tool but also as
a health management and decision-making tool.
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IX. CONCLUSION

This paper has shown that Artificial Intelligence (Al) and
Machine Learning (ML) solutions could be successfully
used to predict the outcomes of survival in lung cancer by
considering patient demographics, medical history, and
clinical characteristics. Several algorithms, such as
Random Forest, Gradient Boosting, Decision tree, K-
Nearest Neighbors (KNN) and Naive Bayes were made
and evaluated on the basis of the ORANGE data mining
platform. The Decision Tree was the most predictive to
use among these. The ease with which Decision Tree
models can be interpreted, and so can the Logistic
Regression in the larger research, makes them
exceptionally useful in clinical practice where
transparency is of paramount importance. The results
underline how Al-driven predictive models can be used to
improve clinical decision making by assisting with early
detection, risk assessment, and survival prediction in
patients with lung cancer. In addition to clinical tasks, the
incorporation of such predictive models into user-friendly
software, such as ORANGE, has administrative value in
the healthcare industry, such as enhancement of resource
distribution, decrease in costs, and enhanced patient
management approaches. Moreover, the paper underlines
the promising potential of using a combination of clinical
data, feature ranking algorithms (i.e. Chi-square and
ReliefF), and machine learning algorithms to enhance
survival prediction and facilitate evidence-based
healthcare decision making. Further studies are needed to
improve the accuracy and generalizability of the
prediction by using larger and more heterogeneous
datasets, genetic and imaging data, and overcome the
issue of class imbalance by resampling and cost-sensitive
learning. Besides that, the investigation of more complex
deep learning designs including Convolutional Neural
Networks (CNNs) and Long Short-Term Memory
(LSTM) networks might also lead to the further
improvement of predictive capability and clinical
usability.

Moreover, we intend to work with nearby hospitals to
validate the suggested models using actual registry and
Electronic Health Record (EHR) data. In order to evaluate
the survival forecasts' practical utility, calibration, and
robustness in real-world healthcare settings, such clinical
validation will be crucial.

X.  LIMITATIONS

There are a number of limitations to this study. First,
rather than coming directly from hospital Electronic
Health Record (EHR) systems, the lung cancer dataset
used in this work was obtained via a public Kaggle
repository. As a result, there is no guarantee that the
models can be applied to actual hospital populations, and
the authenticity and clinical realism of the data may differ
from actual patient registries. Second, imaging, genomic,
and longitudinal follow-up data that could improve
survival prediction are not included in the dataset. Third,
the analyses have not yet been externally confirmed on
other clinical cohorts and are based on a single dataset.
These constraints suggest that rather than being instantly

deployable models, the provided findings should be taken
as an initial benchmark.

Xl.  ETHICAL CONSIDERATIONS IN AI-DRIVEN
HEALTHCARE

Survival prediction with the help of Al and ML in lung
cancer is an issue with critical ethical considerations. The
information about patients should be managed according
to the data protection laws and policies developed by
institutional review boards. In the case of anonymized or
public datasets, models that are trained on this type of
data may incorporate demographic, access to care, or
comorbidity biases. Regular auditing of model
performance in subgroups and explainable approaches to
enable clinicians to gain an insight into the decision to
make a particular prediction are thus necessary. The use
of the suggested models into practice in any real
healthcare environment should be supported with proper
governance, human regulation, and open communication
with patients and other stakeholders.
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